Article

AKT1, AKT2 and AKT3-dependent cell survival is cell line-specific and knockdown of all three isoforms selectively induces apoptosis in 20 human tumor cell lines

Department of Tumor Biology, Schering-Plough Research Institute, Kenilworth, New Jersey, USA.
Cancer biology & therapy (Impact Factor: 3.63). 05/2007; 6(5):755-62. DOI: 10.4161/cbt.6.5.3995
Source: PubMed

ABSTRACT AKT is a key serine/threonine kinase in the PTEN/PI3K/AKT pathway(1) and activationof AKT is often observed in human cancers. To explore the role of AKT in cell survival in different tumor cells, we tested 20 human tumor cell lines for response to knockdown of AKT by small interference RNA (siRNA) and/or a kinase-dead mutant AKT. siRNA-mediated knockdown of all three AKT isoforms in tumor cell lines led to a reduction of phosphorylation of AKT substrates. Knockdown of AKT resulted in apoptosis in six out of 11 tumor cells with activated AKT. In contrast, knockdown of AKT induced apoptosis in three out of nine cell lines with a low level of active AKT. The responsiveness of the cells to knockdown of AKT was not affected by mutational status of p53 but appeared correlated with overexpression of HER2. To assess the role of individual AKT isoforms, five of the cell lines responsive to knockdown of AKT were further characterized. In ZR-75 cells, AKT1 is the predominant isoform responsible for cell proliferation and survival. Conversely, in IGROV1 cells, AKT2 plays a major role in cell proliferation, but no single isoform is essential for cell survival. Thus, the relative importance of the AKT isoforms is cell line-specific. Our data suggest that inhibiting all three AKT isoforms is necessary to elicit maximal apoptotic response in tumor cells, and the level of activated AKT is a favorable but not always reliable biomarker for preselection of responsive tumor cell lines to AKT inhibitors.

Download full-text

Full-text

Available from: Paul Kirschmeier, Dec 20, 2013
1 Follower
 · 
165 Views
  • Source
    • "Three Akt isoforms, Akt-1, Akt-2, and Akt-3 are encoded by the genes PKBα, PKBβ and PKBγ, respectively (Scheid and Woodgett, 2001). Akt-1 is involved in cellular survival, cell proliferation and protein synthesis pathway, Akt-2 is an important signaling molecule in cell proliferation (Koseoglu et al., 2007) however, the role of Akt-3 is not clear. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Serine/threonine protein kinase v-akt murine thymoma viral oncogene homolog (Akt) is one of the survival kinases with multiple biological functions in the brain and throughout the body. Schizophrenia is one of the most devastating psychiatric disorders. Accumulating evidence has indicated the involvement of the Akt signaling pathway in the pathogenesis of this disorder. Genetic linkage and association studies have identified Akt-1 as a candidate susceptibility gene related for schizophrenia. The level of Akt-1 protein and its kinase activity decreased significantly both in white blood cells from schizophrenic patients and in postmortem brain tissue of schizophrenic patients. Consistent with these findings, alterations in the upstream and downstream pathways of Akt have also been found in many psychiatric disorders. Furthermore, both typical and atypical antipsychotic drugs modify the Akt signaling pathway in a variety of conditions relative to schizophrenia. In addition as a survival kinase, Akt participates in neurodevelopment, synaptic plasticity, protein synthesis and neurotransmission in the central nervous system. It is thought that reduced activity of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway could at least partially explain the cognitive impairment, synaptic morphologic abnormality, neuronal atrophy and dysfunction of neurotransmitter signaling in schizophrenia. In addition, reduced levels of Akt may increase the effects of risk factors on neurodevelopment, attenuate the effects of growth factors on neurodevelopment and reduce the response of patients to antipsychotic agents. More recently, the role of Akt signaling in the functions of schizophrenia susceptibility genes such as disrupted-in-schizophrenia 1 (DISC-1), neuregulin-1 (NRG-1) and dysbindin-1 has been reported. Thus, Akt deficiency may create a context permissive for the expression of risk-gene effects in neuronal morphology and function. This paper reviews the role of Akt in the pathophysiology of schizophrenia and as a potential therapeutic strategy targeting Akt.
    Brain research 07/2012; 1470:145-58. DOI:10.1016/j.brainres.2012.06.032 · 2.83 Impact Factor
  • Source
    • "The function of specific AKT isoforms has only recently been the focus of much study. Knockout of specific AKT isoforms can initiate apoptosis in a variety of epithelial cell lines but the phenotype is cell type specific [17]. The specificity of AKT isoform is important in thymocyte differentiation [18] and in myocyte differentiation [19]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer cells which can survive and or proliferate in hypoxia may be resistant to anti-cancer treatment. In our previous work, we showed that we could group cell lines treated with severe hypoxia into either hypoxia-induced cell cycle arrest-sensitive or resistant phenotypes, and hypoxia-induced cell death (HCD)-sensitive or resistant phenotypes. We showed that the resistant phenotypes were associated with high levels of active-AKT in late hypoxia and sensitive cells were associated with decreased or undetectable levels of AKT in late hypoxia. We have now extended our findings to numerous other cell lines. We show that HCD and loss of AKT is cell density dependent, and both AKT1 and AKT2 isoforms are lost in late hypoxia. Loss of AKT is most likely due to regulated degradation, as transcription of AKT isoforms is unchanged in hypoxia, and AKT is not significantly translocated to the nucleus to account for its disappearance from cytoplasmic lysates. Interestingly, inhibitors of proteosome, calpain or caspase-mediated proteolysis did not significantly block AKT loss. Inhibition of autophagy using diverse lysosome-targeted autophagy inhibitors also did not block AKT loss, however autophagy inhibitors which block general PI3K activity, such as 3-methyladenine or LY294002, were effective inhibitors of AKT loss in late hypoxia. Interestingly, those inhibitors also blocked HCD in an HCD-sensitive cancer cell line. Inhibitors of proteolytic pathways which did not block AKT loss also did not block HCD in HeLa. Our investigations support a model by which AKT is a major switch involved in regulating hypoxia-induced cell death.
    Biochimica et Biophysica Acta 03/2010; 1803(8):951-9. DOI:10.1016/j.bbamcr.2010.03.011 · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The strategy of 'drugging the cancer kinome' has led to the successful development and regulatory approval of several novel molecular targeted agents. The spotlight is now shifting to the phosphatidylinositide 3-kinase (PI3K)-AKT-mammalian target of rapamycin (mTOR) pathway as a key potential target. This review details the role of the pathway in oncogenesis and the rationale for inhibiting its vital components. The focus will be on the progress made in the development of novel therapies for cancer treatment, with emphasis placed on agents that have entered clinical development. Strategies involving horizontal and vertical blockade of the pathway, as well as the use of biomarkers to select appropriate patients and to provide proof of target modulation will also be highlighted. Finally, we discuss the issues and limitations involved with targeting the PI3K-AKT-mTOR pathway, and predict what the future may hold for these novel anticancer therapeutics.
    Current Opinion in Pharmacology 09/2008; 8(4):393-412. DOI:10.1016/j.coph.2008.08.004 · 4.23 Impact Factor
Show more