Eckel RH, Borra S, Lichtenstein AH, Yin-Piazza SY. Understanding the complexity of trans-fatty acid reduction in the American diet. American Heart Association Trans Fat Conference 2006: Report of the Trans Fat Conference Planning Group. Circulation 115, 2231-2246

Tufts University, Бостон, Georgia, United States
Circulation (Impact Factor: 14.43). 04/2007; 115(16):2231-46. DOI: 10.1161/CIRCULATIONAHA.106.181947
Source: PubMed


A 2-day forum was convened to discuss the current status and future implications of reducing trans fatty acids without increasing saturated fats in the food supply while maintaining functionality and consumer acceptance of packaged, processed, and prepared foods. Attendees represented the agriculture and oilseed industry and oil processing, food manufacturing, food service, government, food technology, and health and nutrition disciplines. Presentations included food science behind fatty acid technology, the health science of dietary fatty acids, alternatives to trans fatty acids, and the use of alternatives in food manufacturing and food service. The reduction of trans fatty acids in the food supply is a complex issue involving interdependent and interrelated stakeholders. Actions to reduce trans fatty acids need to carefully consider both intended and unintended consequences related to nutrition and public health. The unintended consequence of greatest concern is that fats and oils high in saturated fats, instead of the healthier unsaturated fats, might be used to replace fats and oils with trans fatty acids. Many different options of alternative oils and fats to replace trans fatty acids are available or in development. Decisions on the use of these alternatives need to consider availability, health effects, research and development investments, reformulated food quality and taste, supply-chain management, operational modifications, consumer acceptance, and cost. The conference demonstrated the value of collaboration between the food industry and health and nutrition professionals, and this conference model should be used to address other food development, processing, and/or technology issues.


Available from: Robert Eckel, Sep 10, 2014
  • Source
    • "Ensuring that TFA reduction does not lead to an increase in SFA will require active engagement and collaboration among the government, the agriculture sector and Indian industry. Previous research has suggested that leadership and commitment from senior management of industry, collaboration across the supply chain and adequate supply of alternative oils, increased demand for healthy products, increased media coverage and regulation are needed to enable healthier product reformulation [18]. Currently there is insufficient demand for low TFA and SFA products in India, which gives industry little incentive to reformulate in a more healthful way, especially considering the increased costs associated with use of PUFA. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The consumption of partially hydrogenated vegetable oils (PHVOs) high in trans fat is associated with an increased risk of cardiovascular disease and other non-communicable diseases. In response to high intakes of PHVOs, the Indian government has proposed regulation to set limits on the amount of trans fat permissible in PHVOs. Global recommendations are to replace PHVOs with polyunsaturated fatty acids (PUFAs) in order to optimise health benefits; however, little is known about the practicalities of implementation in low-income settings. The aim of this study was to examine the technical and economic feasibility of reducing trans fat in PHVOs and reformulating it using healthier fats. Thirteen semi-structured interviews were conducted with manufacturers and technical experts of PHVOs in India. Data were open-coded and organised according to key themes. Interviewees indicated that reformulating PHVOs was both economically and technically feasible provided that trans fat regulation takes account of the food technology challenges associated with product reformulation. However, there will be challenges in maintaining the physical properties that consumers prefer while reducing the trans fat in PHVOs. The availability of input oils was not seen to be a problem because of the low cost and high availability of imported palm oil, which was the input oil of choice for industry. Most interviewees were not concerned about the potential increase in saturated fat associated with increased use of palm oil and were not planning to use PUFAs in product reformulation. Interviewees indicated that many smaller manufacturers would not have sufficient capacity to reformulate products to reduce trans fat. Reformulating PHVOs to reduce trans fat in India is feasible; however, a collision course exists where the public health goal to replace PHVOs with PUFA are opposed to the goals of industry to produce a cheap alternative product that meets consumer preferences. Ensuring that product reformulation is done in a way that maximises health benefits will require shifts in knowledge and subsequent demand of products, decreased reliance on palm oil, investment in research and development and increased capacity for smaller manufacturers.
    BMC Public Health 12/2013; 13(1):1139. DOI:10.1186/1471-2458-13-1139 · 2.26 Impact Factor
  • Source
    • "Consumption of high amounts of trans fat is linked to increased risk of cardiovascular diseases [20]. Lowering the content of α-linolenic acid to reduce soy oil unsaturation is a strategy for eliminating the need for soy oil hydrogenation and improving the shelf life of food products containing soy oil. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Soy oil is a major vegetable oil consumed in the US. A recently developed soybean variety produces oil with a lower concentration of α-linolenic acid, hence a higher (n-6)/(n-3) ratio, than regular soy oil. The study was conducted to determine the metabolic impact of the low α-linolenic acid containing soy oil. Methods Ossabaw pigs were fed diets supplemented with either 13% regular soybean oil (SBO), or 13% of the low α-linolenic soybean oil (LLO) or a control diet (CON) without extra oil supplementation, for 8 weeks. Results Serum and adipose tissue α-linolenic acid concentration was higher in pigs fed the SBO diet than those on the CON and LLO diets. In the serum, the concentration of saturated fatty acids (SFA) was lower in the LLO group than in CON and SBO groups polyunsaturated fatty acid (PUFA) concentration was higher in the LLO group compared to CON and SBO groups. Glucose, insulin, triglycerides and LDL-cholesterol were higher in pigs fed the SBO diet than those fed the CON and LLO diets. HDL-cholesterol was lower in pigs on the SBO diet than those on the CON and LLO diets. Pigs fed SBO and LLO diets had lower CRP concentration than those on the CON diet. Adipose tissue expression of Interleukin 6 (IL-6) was higher in the SBO and LLO diets than the CON. Expression of ECM genes, COLVIA and fibronectin, was significantly reduced in the SBO diet relative to the CON and LLO diets whereas expression of inflammation-related genes, cluster of differentiation 68 (CD68) and monocyte chemoattractant protein 1 (MCP-1), was not different across treatments. Conclusions Results suggest that lowering the content of α-linolenic acid in the context of a high fat diet could lead to mitigation of development of hyperinsulinemia and dyslipidemia without significant effects on adipose tissue inflammation.
    Nutrition & Metabolism 03/2013; 10(1):27. DOI:10.1186/1743-7075-10-27 · 3.26 Impact Factor
  • Source
    • "Importantly, the fat interesterification does not alter the quality of FAs, favorably modifies their melting point, and slows their rancidification/chemical decomposition, thereby creating more suitable oils for deep frying or spreadable products, especially when a suitable crystallization behavior is reached ( ¨ Ozay and others 1998; Sato 2001; Eckel and others 2007; Soares and others 2012). The crystallization (that is, TGs fractionation or chromatographic separation of solid/liquid lipid phases) can be controlled, and the ratio between the 2 phases as well as the crystalline character of the solid phase can determine the sample consistency and firmness of the fat food product (van Duijn and others 2006; Wassel and Young 2007; Zhang and others 2011). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Trans fatty acids (TFAs) mainly arise from 2 major sources: natural ruminal hydrogenation and industrial partial catalytic hydrogenation. Increasing evidence suggests that most TFAs and their isomers cause harmful health effects (that is, increased risk of cardiovascular diseases). Nevertheless, in spite of the existence of an international policy consensus regarding the need for public health action, several countries (for example, France) do not adopt sufficient voluntary approaches (for example, governmental regulations and systematic consumer rejections) nor sufficient industrial strategies (for example, development of healthier manufacturing practices and innovative processes such as fat interesterifications) to eliminate deleterious TFAs from processed foods while ensuring the overall quality of the final product (for example, nutritional value and stability). In this manuscript, we first review the physical-chemical properties of TFAs, their occurrence in processed foods, their main effects on health, and the routine analytical methods to characterize TFAs, before emphasizing on the major industrial methods (that is, fat food reformulation, fat interesterification, genetically modified FAs composition) that can be used worldwide to reduce TFAs in foods.
    Journal of Food Science 03/2013; 78(3):R377-86. DOI:10.1111/1750-3841.12055 · 1.70 Impact Factor
Show more