• [Show abstract] [Hide abstract]
    ABSTRACT: Drug-induced hepatotoxicity is a frequent cause of liver disease and acute liver failure, particularly in patients treated with multiple drugs. Several antibacterial drugs have the potential to cause severe liver injury and failure. This article aims to increase the awareness and understanding of drug induced liver injury (DILI) due to antibacterial drugs. It reviews the pattern of antibacterial DILI and provides details on molecular mechanisms and toxicogenomics, as well as clinical data based on epidemiology studies. Certain antibacterial drugs are more frequently linked to hepatotoxicity than others. Therefore, the hepatotoxic potential of tetracyclines,sulfonamides, tuberculostatic agents, macrolides, quinolones,and beta-lactams are discussed in more detail. Efforts to improve the early detection of DILI and the acquisition of high-quality epidemiological data are pivotal for increased patient safety.
    Infection 02/2010; 38(1):3-11. DOI:10.1007/s15010-009-9179-z · 2.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present the case of a 23-year-old female patient with acute liver failure following intake of minocycline. This patient had severe hypereosinophilia and massively increased IgE levels. Experimental studies in this case revealed elevated IFN-γ-, as well as TNF-α-producing CD4+ and CD8+ T-cells after in vitro stimulation with minocycline, indicating a type I/IgE-mediated as well as type II/cytotoxic reaction in the pathogenesis of minocycline-induced liver failure. Although mild forms of liver involvement are well known side effects of minocycline, only 8 cases with acute liver failure have been reported, and we present a review of all cases.
    Zeitschrift für Gastroenterologie 08/2012; 50(8):771-5. DOI:10.1055/s-0031-1299443 · 1.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nanoliposomal technology is a promising drug delivery system that could be employed to improve the pharmacokinetic properties of clearance and distribution in ocular drug delivery to the retina. We developed a nanoscale version of an anionic, cholesterol-fusing liposome that can encapsulate therapeutic levels of minocycline capable of drug delivery. We demonstrate that size extrusion followed by size-exclusion chromatography can form a stable 80-nm liposome that encapsulates minocycline at a concentration of 450 ± 30 μM, which is 2% to 3% of loading material. More importantly, these nontoxic nanoliposomes can then deliver 40% of encapsulated minocycline to the retina after a subconjunctival injection in the STZ model of diabetes. Efficacy of therapeutic drug delivery was assessed via transcriptomic and proteomic biomarker panels. For both the free minocycline and encapsulated minocycline treatments, proinflammatory markers of diabetes were downregulated at both the messenger RNA and protein levels, validating the utility of biomarker panels for the assessment of ocular drug delivery vehicles.
    Nanomedicine: nanotechnology, biology, and medicine 03/2012; DOI:10.1016/j.nano.2012.03.004 · 6.93 Impact Factor