The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure.

RIKEN-MIT Neuroscience Research Center, The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 04/2007; 104(15):6418-23. DOI: 10.1073/pnas.0701656104
Source: PubMed

ABSTRACT Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) is a serine/threonine protein kinase critically involved in synaptic plasticity in the brain. It is highly concentrated in the postsynaptic density fraction, exceeding the amount of any other signal transduction molecules. Because kinase signaling can be amplified by catalytic reaction, why CaMKII exists in such a large quantity has been a mystery. Here, we provide biochemical evidence that CaMKII is capable of bundling F-actin through a stoichiometric interaction. Consistent with this evidence, in hippocampal neurons, RNAi-mediated down-regulation of CaMKII leads to a reduction in the volume of dendritic spine head that is mediated by F-actin dynamics. An overexpression of CaMKII slowed down the actin turnover in the spine head. This activity was associated with beta subunit of CaMKII in a manner requiring its actin-binding and association domains but not the kinase domain. This finding indicates that CaMKII serves as a central signaling molecule in both functional and structural changes during synaptic plasticity.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Ca(2+)/calmodulin-dependent protein kinase IIα (CaMKIIα) autophosphorylation at Thr286 and Thr305/Thr306 regulates kinase activity, modulates subcellular targeting, and is critical for normal synaptic plasticity and learning and memory. Here, a mass spectrometry-based approach was used to identify Ca2+-dependent and -independent in vitro autophosphorylation sites in recombinant CaMKIIα and CaMKIIβ. CaMKII holoenzymes were then immunoprecipitated from subcellular fractions of forebrains isolated from either wildtype (WT) mice or mice with a Thr286 to Ala knock-in mutation of CaMKIIα (T286A-KI mice) and analyzed using the same approach in order to characterize in vivo phosphorylation sites in both CaMKII isoforms and identify CaMKII associated proteins (CaMKAPs). A total of 6 and 7 autophosphorylation sites in CaMKIIα and CaMKIIβ, respectively, were detected in WT mice. Thr286-phosphorylated CaMKIIα and Thr287-phosphorylated CaMKIIβ were selectively enriched in WT Triton-insoluble (synaptic) fractions compared to Triton-soluble (membrane) and cytosolic fractions. In contrast, Thr306-phosphorylated CaMKIIα and Ser315- and Thr320/Thr321-phosphorylated CaMKIIβ were selectively enriched in WT cytosolic fractions. The T286A-KI mutation significantly reduced levels of phosphorylation of CaMKIIα at Ser275 across all subcellular fractions, and of cytosolic CaMKIIβ at Ser315 and Thr320/Thr321. Significantly more CaMKAPs co-precipitated with WT CaMKII holoenzymes in the synaptic fraction compared to the membrane fraction, with functions including scaffolding, microtubule organization, actin organization, ribosomal function, vesicle trafficking, and others. The T286A-KI mutation altered the interactions of multiple CaMKAPs with CaMKII, including several proteins linked to autism spectrum disorders. These data identify CaMKII isoform phosphorylation sites and a network of synaptic protein interactions that are sensitive to the abrogation of Thr286 autophosphorylation of CaMKIIα, likely contributing to the diverse synaptic and behavioral deficits of T286A-KI mice.
    ACS Chemical Neuroscience 02/2015; 6(4). DOI:10.1021/cn500337u · 4.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glutamate application is an established method of inducing PC12 cell injury. PC12 cells were cultured with serum containing Tongqiaohuoxue decoction consisting of moschus, Carthamus tinctorius, Rhizoma chuanxiong, Semen pruni persicae, and Radix Paeoniae Rubra. After 24 hours of co-cultivation, glutamate (12.5 mM) was added to the culture medium. We found that serum containing Tongqiaohuoxue decoction prevented the increase in reactive oxygen species, and the decreases in superoxide dismutase and Na(+)-K(+)-ATPase activity, induced by glutamate. It also reduced the concentration of malondialdehyde, enhanced the mitochondrial transmembrane potential, inhibited the elevation of cellular calcium, and decreased phosphorylation of calmodulin-dependent protein kinase II. Thus, serum containing Tongqiaohuoxue decoction had protective effects on cell proliferation and membrane permeability in glutamate-injured PC12 cells.
    Neural Regeneration Research 05/2012; 7(15):1125-31. DOI:10.3969/j.issn.1673-5374.2012.15.001 · 0.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Translation elongation factor eEF1A is a G-protein which has a crucial role in the ribosomal polypeptide elongation and possesses a number of non-translational functions. Here, we show that the A,A∗,A' helices segment of mammalian eEF1A is dispensable for the eEF1A∗eEF1Bα complex formation. The A,A∗,A' helices region did not interact with actin; however, its removal eliminates the actin bundling activity of eEF1A, probably due to the destruction of a dimeric structure of eEF1A. The translation function of monomers and the actin-bundling function of dimers of mammalian eEF1A is suggested. Copyright © 2015. Published by Elsevier B.V.
    FEBS letters 04/2015; DOI:10.1016/j.febslet.2015.03.030 · 3.34 Impact Factor


Available from