Function and localization within rostral prefrontal cortex (area 10).

UCL Institute of Cognitive Neuroscience and Psychology Department, University College London, 17 Queen Square, London WC1E 6BT, UK.
Philosophical Transactions of The Royal Society B Biological Sciences (Impact Factor: 6.31). 05/2007; 362(1481):887-99. DOI: 10.1098/rstb.2007.2095
Source: PubMed

ABSTRACT We propose that rostral prefrontal cortex (PFC; approximating area 10) supports a cognitive system that facilitates either stimulus-oriented (SO) or stimulus-independent (SI) attending. SO attending is the behaviour required to concentrate on current sensory input, whereas SI attending is the mental processing that accompanies self-generated or self-maintained thought. Regions of medial area 10 support processes related to the former, whilst areas of lateral area 10 support processes that enable the latter. Three lines of evidence for this 'gateway hypothesis' are presented. First, we demonstrate the predicted patterns of activation in area 10 during the performance of new tests designed to stress the hypothetical function. Second, we demonstrate area 10 activations during the performance of established functions (prospective memory, context memory), which should hypothetically involve the proposed attentional system. Third, we examine predictions about behaviour-activation patterns within rostral PFC that follow from the hypothesis. We show with meta-analysis of neuroimaging investigations that these predictions are supported across a wide variety of tasks, thus establishing a general principle for functional imaging studies of this large brain region. We then show that while the gateway hypothesis accommodates a large range of findings relating to the functional organization of area 10 along a medial-lateral dimension, there are further principles relating to other dimensions and functions. In particular, there is a functional dissociation between the anterior medial area 10, which supports processes required for SO attending, and the caudal medial area 10, which supports processes relating to mentalizing.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous research using cognitive paradigms has found task-related activation that includes prefrontal brain structures and that is attenuated in association with posttraumatic stress symptoms (PTSS). The present investigation used a cognitive control paradigm, the Arrows Task, to study subjects who had not sustained a traumatic brain injury during deployment and who had a wide range of scores on the Posttraumatic Stress Disorder Checklist (PCL). During the Arrows Task there was no significant activation within the full sample of 15 subjects, but deactivation was found within areas that are likely to be involved in cognitive control, including the dorsal anterior cingulate gyrus and parietal cortex. Exploratory analyses were also conducted to compare subjects with relatively high PTSS (HIGH PTSS, n = 7) to those with lower severity or no symptoms (LOW PTSS, n = 8). LOW PTSS subjects exhibited activation in nonfrontal brain areas and their activation was greater relative to the HIGH PTSS subjects. In contrast, the HIGH PTSS group had extensive deactivation and there was a negative relationship between activation and PCL scores within subcortical structures, the cerebellum, and higher-order cortical association areas. For the HIGH PTSS group there was also a positive relationship between PCL scores and activation within basic sensory and motor areas, as well as structures thought to have a role in emotion and the regulation of internal bodily states. These findings are consistent with widespread neural dysfunction in subjects with greater PTSS, including changes similar to those reported to occur with acute stress and elevated noradrenergic activity.
    Brain Imaging and Behavior 04/2015; DOI:10.1007/s11682-015-9376-6 · 3.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Brodmann's area 10 is one of the largest cytoarchitecturally defined regions in the human cerebral cortex, occupying the most anterior part of the prefrontal cortex [frontopolar cortex (FPC)], and is believed to sit atop a prefrontal hierarchy. The crucial contributions that the FPC makes to cognition are unknown. Rodents do not possess a FPC, but primates do, and we report here the behavioral effects of circumscribed FPC lesions in nonhuman primates. FPC lesions selectively impaired rapid one-trial learning about unfamiliar objects and unfamiliar objects-in-scenes, and also impaired rapid learning about novel abstract rules. Object recognition memory, shifting between established abstract behavioral rules, and the simultaneous application of two distinct rules were unaffected by the FPC lesion. The distinctive pattern of impaired and spared performance across these seven behavioral tasks reveals that the FPC mediates exploration and rapid learning about the relative value of novel behavioral options, and shows that the crucial contributions made by the FPC to cognition differ markedly from the contributions of other primate prefrontal regions.
    Proceedings of the National Academy of Sciences 03/2015; 112(9):201419649. DOI:10.1073/pnas.1419649112 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper outlines how to conduct a simple meta-analysis of neuroimaging foci of activation in R. In particular, the first part of this paper reviews the nature of fMRI data, and presents a brief overview of the existing packages that can be used to analyze fMRI data in R. The second part illustrates how to handle fMRI data by showing how to visualize the results of different neuroimaging studies in a so-called orthographic view, where the spatial distribution of the foci of activation from different fMRI studies can be inspected visually. Functional MRI (fMRI) is one of the most important and powerful tools of neuroscientific research. Although not as commonly used for fMRI analysis as some specific applications such as SPM (Friston et al., 2006), AFNI (Cox and Hyde, 1997), or FSL (Smith et al., 2004), R does provide several packages that can be employed in neuroimaging research. These packages deal with a variety of topics, ranging from reading and manipulating fMRI datasets, to implementing sophisticated statistical models. The goal of this paper is to provide a brief introduction to fMRI analysis, and the various R packages that can be used to carry it out. As an example, it will show how to use simple R commands to read fMRI images and plot results from previous studies, which can then be visually compared. This is a special form of meta-analysis, and a common way to compare results from the existing literature.
    The R Journal 12/2014; 2(6):5-15. · 0.90 Impact Factor

Full-text (2 Sources)

Available from
May 29, 2014