Article

From the Apennines to the Alps: colonization genetics of the naturally expanding Italian wolf (Canis lupus) population.

Istituto Nazionale per la Fauna Selvatica (INFS) Via Cà Fornacetta 9, 40064, Ozzano Emilia (BO), Italy.
Molecular Ecology (Impact Factor: 6.28). 04/2007; 16(8):1661-71. DOI: 10.1111/j.1365-294X.2007.03262.x
Source: PubMed

ABSTRACT Wolves in Italy strongly declined in the past and were confined south of the Alps since the turn of the last century, reduced in the 1970s to approximately 100 individuals surviving in two fragmented subpopulations in the central-southern Apennines. The Italian wolves are presently expanding in the Apennines, and started to recolonize the western Alps in Italy, France and Switzerland about 16 years ago. In this study, we used a population genetic approach to elucidate some aspects of the wolf recolonization process. DNA extracted from 3068 tissue and scat samples collected in the Apennines (the source populations) and in the Alps (the colony), were genotyped at 12 microsatellite loci aiming to assess (i) the strength of the bottleneck and founder effects during the onset of colonization; (ii) the rates of gene flow between source and colony; and (iii) the minimum number of colonizers that are needed to explain the genetic variability observed in the colony. We identified a total of 435 distinct wolf genotypes, which showed that wolves in the Alps: (i) have significantly lower genetic diversity (heterozygosity, allelic richness, number of private alleles) than wolves in the Apennines; (ii) are genetically distinct using pairwise F(ST) values, population assignment test and Bayesian clustering; (iii) are not in genetic equilibrium (significant bottleneck test). Spatial autocorrelations are significant among samples separated up to c. 230 km, roughly correspondent to the apparent gap in permanent wolf presence between the Alps and north Apennines. The estimated number of first-generation migrants indicates that migration has been unidirectional and male-biased, from the Apennines to the Alps, and that wolves in southern Italy did not contribute to the Alpine population. These results suggest that: (i) the Alps were colonized by a few long-range migrating wolves originating in the north Apennine subpopulation; (ii) during the colonization process there has been a moderate bottleneck; and (iii) gene flow between sources and colonies was moderate (corresponding to 1.25-2.50 wolves per generation), despite high potential for dispersal. Bottleneck simulations showed that a total of c. 8-16 effective founders are needed to explain the genetic diversity observed in the Alps. Levels of genetic diversity in the expanding Alpine wolf population, and the permanence of genetic structuring, will depend on the future rates of gene flow among distinct wolf subpopulation fragments.

0 Bookmarks
 · 
122 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite continuous historical distribution of the grey wolf (Canis lupus) throughout Eurasia, the species displays considerable morphological differentiation that resulted in delimitation of a number of subspecies. However, these morphological discontinuities are not always consistent with patterns of genetic differentiation. Here we assess genetic distinctiveness of grey wolves from the Caucasus (a region at the border between Europe and West Asia) that have been classified as a distinct subspecies C. l. cubanensis. We analysed their genetic variability based on mtDNA control region, microsatellite loci and genome-wide SNP genotypes (obtained for a subset of the samples), and found similar or higher levels of genetic diversity at all these types of loci as compared with other Eurasian populations. Although we found no evidence for a recent genetic bottleneck, genome-wide linkage disequilibrium patterns suggest a long-term demographic decline in the Caucasian population - a trend consistent with other Eurasian populations. Caucasian wolves share mtDNA haplotypes with both Eastern European and West Asian wolves, suggesting past or ongoing gene flow. Microsatellite data also suggest gene flow between the Caucasus and Eastern Europe. We found evidence for moderate admixture between the Caucasian wolves and domestic dogs, at a level comparable with other Eurasian populations. Taken together, our results show that Caucasian wolves are not genetically isolated from other Eurasian populations, share with them the same demographic trends, and are affected by similar conservation problems.
    PLoS ONE 01/2014; 9(4):e93828. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: After centuries of population decline and range contraction, gray wolves (Canis lupus) are now expanding in Europe. Understanding wolf social structure and population dynamics and predicting their future range expansion is mandatory to design sound conservation strategies, but field monitoring methods are difficult or exceedingly expensive. Non-invasive genetic sampling offers unique opportunities for the reliable monitoring of wolf populations. We conducted a 9-year long monitoring program in a large area (approximately 19,171 km2) in northern Italy, aiming to identify individuals, estimate kinship, reconstruct packs, and describe their dynamics. Of 5,065 biological samples (99% scats), we genotyped and sexed 44% reliably using 12 unlinked autosomal microsatellites, 4 Y-linked microsatellites and a diagnostic mtDNA control-region sequence. We identified 414 wolves, 88 dogs, and 16 wolf x dog hybrids. Wolves in the study area belonged to at least 42 packs. We reconstructed the genealogy of 26 packs. The mean pack size was 5.6 ± 2.4 (± SD), including adoptees, with a mean minimum pack home range of 74 ± 52 km2. We detected turnovers of breeding pairs in 19% of the packs. Reproductive wolves were unrelated and unrelated dispersers founded new packs, except for 1 pack founded by a brother-sister pair. We did not detect multiple breeding females in any packs. Overall, the population was not inbred. We found significant isolation-by-distance and spatial autocorrelation, with non-random genetic structure up to a distance of approximately 17 km. We detected 37 dispersers, 14 of which became breeders in new or already existing packs. Our results can be used to model habitat uses by wolves, to estimate survival rates, to predict future expansion of the wolf population, and to build risk maps of wolf-human conflicts.
    Journal of Mammalogy 02/2014; · 2.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hybridization and introgression can impact the evolution of natural populations. Several wild canid species hybridize in nature, sometimes originating new taxa. However, hybridization with free-ranging dogs is threatening the genetic integrity of grey wolf populations (Canis lupus), or even the survival of endangered species (e.g., the Ethiopian wolf C. simensis). Efficient molecular tools to assess hybridization rates are essential in wolf conservation strategies. We evaluated the power of biparental and uniparental markers (39 autosomal and 4 Y-linked microsatellites, a melanistic deletion at the β-defensin CBD103 gene, the hypervariable domain of the mtDNA control-region) to identify the multilocus admixture patterns in wolf x dog hybrids. We used empirical data from 2 hybrid groups with different histories: 30 presumptive natural hybrids from Italy and 73 Czechoslovakian wolfdogs of known hybrid origin, as well as simulated data. We assessed the efficiency of various marker combinations and reference samples in admixture analyses using 69 dogs of different breeds and 99 wolves from Italy, Balkans and Carpathian Mountains. Results confirmed the occurrence of hybrids in Italy, some of them showing anomalous phenotypic traits and exogenous mtDNA or Y-chromosome introgression. Hybridization was mostly attributable to village dogs and not strictly patrilineal. The melanistic β-defensin deletion was found only in Italian dogs and in putative hybrids. The 24 most divergent microsatellites (largest wolf-dog FST values) were equally or more informative than the entire panel of 39 loci. A smaller panel of 12 microsatellites increased risks to identify false admixed individuals. The frequency of F1 and F2 was lower than backcrosses or introgressed individuals, suggesting hybridization already occurred some generations in the past, during early phases of wolf expansion from their historical core areas. Empirical and simulated data indicated the identification of the past generation backcrosses is always uncertain, and a larger number of ancestry-informative markers is needed.
    PLoS ONE 01/2014; 9(1):e86409. · 3.53 Impact Factor

Full-text (2 Sources)

Download
66 Downloads
Available from
Jun 2, 2014