Genome-wide association study of prostate cancer identifies a second risk locus at 8q24.

SAIC-Frederick, National Cancer Institute (NCI)-Frederick Cancer Research and Development Center, Frederick, Maryland 21702, USA.
Nature Genetics (Impact Factor: 29.65). 05/2007; 39(5):645-9. DOI: 10.1038/ng2022
Source: PubMed

ABSTRACT Recently, common variants on human chromosome 8q24 were found to be associated with prostate cancer risk. While conducting a genome-wide association study in the Cancer Genetic Markers of Susceptibility project with 550,000 SNPs in a nested case-control study (1,172 cases and 1,157 controls of European origin), we identified a new association at 8q24 with an independent effect on prostate cancer susceptibility. The most significant signal is 70 kb centromeric to the previously reported SNP, rs1447295, but shows little evidence of linkage disequilibrium with it. A combined analysis with four additional studies (total: 4,296 cases and 4,299 controls) confirms association with prostate cancer for rs6983267 in the centromeric locus (P = 9.42 x 10(-13); heterozygote odds ratio (OR): 1.26, 95% confidence interval (c.i.): 1.13-1.41; homozygote OR: 1.58, 95% c.i.: 1.40-1.78). Each SNP remained significant in a joint analysis after adjusting for the other (rs1447295 P = 1.41 x 10(-11); rs6983267 P = 6.62 x 10(-10)). These observations, combined with compelling evidence for a recombination hotspot between the two markers, indicate the presence of at least two independent loci within 8q24 that contribute to prostate cancer in men of European ancestry. We estimate that the population attributable risk of the new locus, marked by rs6983267, is higher than the locus marked by rs1447295 (21% versus 9%).

Download full-text


Available from: Zhaoming Wang, Jun 19, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: KLK3 gene products, like human prostate-specific antigen (PSA), are important biomarkers in the clinical diagnosis of prostate cancer (PCa). G protein-coupled receptor RFX6, C2orf43 and FOXP4 signaling plays important roles in the development of PCa. However, associations of these genes with PCa in northern Chinese men remain to be detailed. This study aimed to investigate their impact on occurrence and level of malignancy. Methods: All subjects were from Beijing and Tianjin, including 266 cases with prostate cancer and 288 normal individuals as controls. We evaluated associations between clinical covariates (age at diagnosis, prostate specific antigen, Gleason score, tumor stage and aggressive) and 6 candidate PCa risk loci, genotyped by PCR- high resolution melting curve and sequencing methods. Results: Case-control analysis of allelic frequency of PCa associated with PCa showed that one of the 6 candidate risk loci, rs339331 in the RFX6 gene, was associated with reduced risk of prostate cancer (odds ratio (OR) = 0.73, 95% confidence interval (CI) =0.57-0.94, P = 0.013) in northern Chinese men. In addition, subjects with CX (CC+TC) genotypes had a decreased risk for prostrate cancer compared to those carrying the TT homozygote (OR =0.64, 95% CI = 0.45- 0.90, P = 0.008). The TT genotype of 13q22 (rs9600079, T) was associated with tumor stage (P=0.044, OR=2.34, 95% CI=0.94-5.87). Other SNPs were not significantly associated with clinical covariates in prostate cancer (P > 0.05). Conclusions. rs339331 in the RFX6 gene may be associated with prostate cancer as a susceptibility locus in northern Chinese men.
    Asian Pacific journal of cancer prevention: APJCP 05/2013; 14(5):3075-3078. DOI:10.7314/APJCP.2013.14.5.3075 · 1.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background:Most of the heritable risk of glioma is presently unaccounted for by mutations in known genes. In addition to rare inactivating germline mutations in TP53 causing glioma in the context of the Li-Fraumeni syndrome, polymorphic variation in TP53 may also contribute to the risk of developing glioma.Methods:To comprehensively evaluate the impact of variation in TP53 on risk, we analysed 23 tagSNPs and imputed 2377 unobserved genotypes in four series totaling 4147 glioma cases and 7435 controls.Results:The strongest validated association signal was shown by the imputed single-nucleotide polymorphism (SNP) rs78378222 (P=6.86 × 10(-24), minor allele frequency ∼0.013). Confirmatory genotyping confirmed the high quality of the imputation. The association between rs78378222 and risk was seen for both glioblastoma multiforme (GBM) and non-GBM tumours. We comprehensively examined the relationship between rs78378222 and overall survival in two of the case series totaling 1699 individuals. Despite employing statistical tests sensitive to the detection of differences in early survival, no association was shown.Conclusion:Our data provided strong validation of rs78378222 as a risk factor for glioma but do not support the tenet that the polymorphism being a clinically useful prognostic marker. Acquired TP53 inactivation is a common feature of glioma. As rs78378222 changes the polyadenylation signal of TP53 leading to impaired 3'-end processing of TP53 mRNA, the SNP has strong plausibility for being directly functional contributing to the aetiological basis of glioma.British Journal of Cancer advance online publication, 9 April 2013; doi:10.1038/bjc.2013.155
    British Journal of Cancer 04/2013; 108(10). DOI:10.1038/bjc.2013.155 · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent study, which included meta-analysis of two genome-wide association studies (GWAS), followed by a replication, identified the association between single nucleotide polymorphism (SNP) rs3787016 at 19p13 and prostate cancer (PCa) risk. Considering possible genetic differences between populations, we conducted the study in order to evaluate the association of this polymorphism with prostate cancer risk in Serbian population. 261 samples of peripheral blood were obtained from the patients with PCa and 257 samples from patients with benign prostatic hyperplasia (BPH). 106 volunteers who gave samples of bucal swabs comprised the control group. For individuals diagnosed with PCa clinicopathological characteristics including serum prostate-specific antigen (PSA) level at diagnosis, Gleason score (GS) and clinical stage were determined. Genotypization of rs3787016 was performed by using Taqman(®) SNP Genotyping Assay. The differences in alelle and genotype frequencies between analyzed groups of subjects were performed by using PLINK, SPSS 17.0 for Windows and SNPStats statistical software. No significant association of rs3787016 with PCa risk was determined comparing allele and genotype frequencies among group of patients diagnosed with PCa and the control group, as well as among groups of patients with PCa and BPH. Also, no evidence of association of rs3787016 with PCa risk was shown using tests for association under dominant and recessive genetic models. SNP rs3787016 showed no significant association with standard prognostic parameters regarding PCa progression, nor with the risk of disease progression assessed according to two different risk classification systems.
    International Journal of Clinical and Experimental Medicine 01/2013; 6(1):57-66. · 1.42 Impact Factor