In vivo altered unfolded protein response and apoptosis in livers from lipopolysaccharide-challenged cirrhotic rats.

INSERM U773, Centre de Recherche Bichat-Beaujon CRB3, Paris 75018, France.
Journal of Hepatology (Impact Factor: 10.4). 06/2007; 46(6):1075-88. DOI: 10.1016/j.jhep.2007.01.034
Source: PubMed

ABSTRACT Endoplasmic reticulum (ER)-related unfolded protein response (UPR) is mediated by PKR-like ER kinase (PERK), ATF6 and IRE1. PERK phosphorylates eukaryotic translation initiation factor-2alpha (eIF2alpha) to attenuate protein synthesis, including in NF-kappaB-dependent antiapoptotic proteins. We hypothesized that an altered UPR in the liver may sensitize cirrhotic livers to LPS-induced, TNFalpha-mediated apoptosis. Thus, we examined in vivo UPR and NF-kappaB activity in livers from cirrhotic and normal LPS-challenged rats.
Livers were harvested in rats that did or did not receive LPS.
Under baseline conditions, no UPR was found in normal livers while PERK/eIF2alpha and ATF6 pathways were activated in cirrhotic livers. After LPS, in normal livers, the PERK/eIF2alpha pathway was transiently activated. ATF6 and IRE1 were activated. In cirrhotic livers, the PERK/eIF2alpha pathway remained elevated. ATF6 and IRE1 pathways were altered. LPS-induced, NF-kappaB-dependent antiapoptotic proteins increased in normal livers whereas their expression was blunted at the posttranscriptional level in cirrhotic livers.
Cirrhotic livers exhibit partial UPR activation in the basal state and full UPR, although altered, after LPS challenge. Sustained eIF2alpha phosphorylation, a hallmark of cirrhotic liver UPR, is associated with a lack of LPS-induced accumulation of NF-kappaB-dependent antiapoptotic proteins which may sensitize cirrhotic livers to LPS/TNFalpha-mediated apoptosis.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammatory response has recently been shown to induce endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), which either recovers proper ER function or activates apoptosis. Here we show that endotoxin (lipopolysaccharide = LPS) can lead to functional ER failure tentatively via a mitochondrion-dependent pathway in livers of rats. Histological examination did not reveal significant damage to liver in form of necroses. Electron microscopy displayed transparent rings appearing around morphologically unchanged mitochondria, which were identified as dilated ER. The spliced mRNA variant of X-box protein-1 (XBP1) and also the mRNA of 78 kDa glucose-regulated protein (GRP78) were up-regulated, both typical markers of ER stress. However, GRP78 was down-regulated at the protein level. A pro-apoptotic shift in the bax/bcl-XL mRNA ratio was not accompanied by translocation of apoptosis inducing factor (AIF) to the nucleus, suggesting that the cells entered a pre-apoptotic state, but apoptosis was not executed. Monooxygenase activity of p450, representing the detoxification system in ER, was decreased after administration of endotoxin. Biochemical analysis of proteins important for ER function revealed the impairment of protein folding, transport, and detoxification suggesting functional ER failure. We suggest that functional ER failure may be a reason for organ dysfunction upon excessive inflammatory response mediated by endotoxin.
    Biochimica et Biophysica Acta 04/2009; 1792(6):521-30. DOI:10.1016/j.bbadis.2009.03.004 · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The eIF2alpha-ATF4 pathway is involved in cellular adaptation to stress and is dysregulated in numerous diseases. Activation of this pathway leads to phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha) and the recruitment of the transcription factor ATF4 (activating transcription factor 4) to specific CCAAT/enhancer binding protein (C/EBP)-ATF response elements (CAREs) located in the promoters of target genes. To monitor the spatiotemporal modulation of this pathway in living animals, we generated a novel CARE-driven luciferase mouse model (CARE-LUC). These transgenic mice enable the investigation of the eIF2alpha-ATF4 pathway activity in the whole organism and at the tissue and cellular levels by combining imaging, luciferase assays, and immunochemistry. Using this mouse line, we showed the tissue-specific activation pattern of this pathway in response to amino acid deficiency or endoplasmic reticulum stress and the hepatic induction of this pathway in a stress-related pathology model of liver fibrosis. The CARE-LUC mouse model represents an innovative tool to investigate the eIF2alpha-ATF4 axis and to develop drugs targeting this important pathway in the remediation of related pathologies.
    04/2015; 8(374-374):rs5. DOI:10.1126/scisignal.aaa0549
  • [Show abstract] [Hide abstract]
    ABSTRACT: The incidence of obesity and non-esterified ('free') fatty acid-associated metabolic disorders such as the metabolic syndrome and diabetes is increasing dramatically in most countries. Although the pathogenesis of these metabolic disorders is complex, there is emerging evidence that ROS (reactive oxygen species) are critically involved in the aberrant signalling and tissue damage observed in this context. Indeed, it is now widely accepted that ROS not only play an important role in physiology, but also contribute to cell and tissue dysfunction. Inappropriate ROS generation may contribute to tissue dysfunction in two ways: (i) dysregulation of redox-sensitive signalling pathways, and (ii) oxidative damage to biological structures (DNA, proteins, lipids, etc.). An important source of ROS is the NOX family of NADPH oxidases. Several NOX isoforms are expressed in the liver and pancreatic beta-cells. There is now evidence that inappropriate activation of NOX enzymes may damage the liver and pancreatic beta-cells. In the context of the metabolic syndrome, the emerging epidemic of non-alcoholic steatohepatitis is thought to be NOX/ROS-dependent and of particular medical relevance. NOX/ROS-dependent beta-cell damage is thought to be involved in glucolipotoxicity and thereby leads to progression from the metabolic syndrome to Type 2 diabetes. Thus understanding the role of NOX enzymes in liver and beta-cell damage should lead to an increased understanding of pathomechanisms in the metabolic syndrome and diabetes and may identify useful targets for novel therapeutic strategies.
    Biochemical Society Transactions 11/2008; 36(Pt 5):920-9. DOI:10.1042/BST0360920 · 3.24 Impact Factor