Analysis of Biochemical Control and Prognostic Factors in Patients Treated With Either Low-Dose Three-Dimensional Conformal Radiation Therapy or High-Dose Intensity-Modulated Radiotherapy for Localized Prostate Cancer

Department of Radiation Oncology, Mayo Clinic Scottsdale, 13400 E. Shea Boulevard, Scottsdale, AZ 85259, USA.
International Journal of Radiation OncologyBiologyPhysics (Impact Factor: 4.26). 07/2007; 68(4):1053-8. DOI: 10.1016/j.ijrobp.2007.01.043
Source: PubMed


To identify prognostic factors and evaluate biochemical control rates for patients with localized prostate cancer treated with either high-dose intensity-modulated radiotherapy (IMRT) or conventional-dose three-dimensional conformal radiotherapy 3D-CRT.
Four hundred sixteen patients with a minimum follow-up of 3 years (median, 5 years) were included. Two hundred seventy-one patients received 3D-CRT with a median dose of 68.4 Gy (range, 66-71 Gy). The next 145 patients received IMRT with a median dose of 75.6 Gy (range, 70.2-77.4 Gy). Biochemical control rates were calculated according to both American Society for Therapeutic Radiology and Oncology (ASTRO) consensus definitions. Prognostic factors were identified using both univariate and multivariate analyses.
The 5-year biochemical control rate was 60.4% for 3D-CRT and 74.1% for IMRT (p < 0.0001, first ASTRO Consensus definition). Using the ASTRO Phoenix definition, the 5-year biochemical control rate was 74.4% and 84.6% with 3D-RT and IMRT, respectively (p = 0.0326). Univariate analyses determined that PSA level, T stage, Gleason score, perineural invasion, and radiation dose were predictive of biochemical control. On multivariate analysis, dose, Gleason score, and perineural invasion remained significant.
On the basis of both ASTRO definitions, dose, Gleason score, and perineural invasion were predictive of biochemical control. Intensity-modulated radiotherapy allowed delivery of higher doses of radiation with very low toxicity, resulting in improved biochemical control.

94 Reads
  • Source
    • "Lips et al. [18]: PTV = Prostate + seminal vesicles + 8 mm margin, 76 Gy mean dose, not more than 5% of rectum received ≥ 72 Gy. Vora et al. [19]: PTV = Prostate + seminal vesicles + 6-10 mm margin, 50.4 Gy + Boost (median 75.6 Gy), not more than 40%/30%/10% of Rectum received ≥ 65 Gy/70 Gy/75 Gy, not more than 1.8 cm2 of rectum received 81 Gy. Zietman et al. [8]: PTV = Prostate + seminal vesicles + 10 mm margin for Photontherapy (50.4 Gy) and 5mm margin for proton Boost (28.8 GyE). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Radiation therapy is one of the recommended treatment options for localized prostate cancer. In randomized trials, dose escalation was correlated with better biochemical control but also with higher rectal toxicity. A prospective multicenter phase II study was carried out to evaluate the safety, clinical and dosimetric effects of the hydrogel prostate-rectum spacer. Here we present the 12 months toxicity results of this trial. Fifty two patients with localized prostate cancer received a transperineal PEG hydrogel injection between the prostate and rectum, and then received IMRT to a dose of78Gy. Gastrointestinal and genitourinary toxicity were recorded during treatment and at 3, 6 and 12 months following irradiation by using the RTOG/EORTC criteria. Additionally, proctoscopy was performed 12 months after treatment and the results were scored using the Vienna Rectoscopy Scale (VRS). Of the patients treated 39.6% and 12.5% experienced acute Grade 1 and Grade 2 GI toxicity, respectively. There was no Grade 3 or Grade 4 acute GI toxicity experienced in the study. Only 4.3% showed late Grade 1 GI toxicity, and there was no late Grade 2 or greater GI toxicity experienced in the study. A total of 41.7%, 35.4% and 2.1% of the men experienced acute Grade 1, Grade 2 and Grade 3 GU toxicity, respectively. There was no Grade 4 acute GU toxicity experienced in the study. Late Grade 1 and Grade 2 GU toxicity was experienced in 17.0% and 2.1% of the patients, respectively. There was no late Grade 3 or greater GU toxicity experienced in the study. Seventy one percent of the patients had a VRS score of 0, and one patient (2%) had Grade 3 teleangiectasia. There was no evidence of ulceration, stricture or necrosis at 12 months. The use of PEG spacer gel is a safe and effective method to spare the rectum from higher dose and toxicity.
    Radiation Oncology 04/2014; 9(1):96. DOI:10.1186/1748-717X-9-96 · 2.55 Impact Factor
  • Source
    • "Patients treated to a median dose of 75.6 Gy in 1.8-2.0 Gy fractions were reported to have acute rectal toxicity of grade 2 or higher (RTOG criteria) in 50%, leading to 24% with late rectal toxicity of grade 2 or higher (RTOG criteria) [28]. In contrast to this data, Noyes et al. reported no acute and late rectal toxicity (RTOG and EORTC criteria) with IMRT to 75.6 Gy in 1.8 Gy per fraction (equivalent dose 73.4 Gy) after transperineal collagen injection [12]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background As dose-escalation in prostate cancer radiotherapy improves cure rates, a major concern is rectal toxicity. We prospectively assessed an innovative approach of hydrogel injection between prostate and rectum to reduce the radiation dose to the rectum and thus side effects in dose-escalated prostate radiotherapy. Methods Acute toxicity and planning parameters were prospectively evaluated in patients with T1-2 N0 M0 prostate cancer receiving dose-escalated radiotherapy after injection of a hydrogel spacer. Before and after hydrogel injection, we performed MRI scans for anatomical assessment of rectal separation. Radiotherapy was planned and administered to 78 Gy in 39 fractions. Results From eleven patients scheduled for spacer injection the procedure could be performed in ten. In one patient hydrodissection of the Denonvillier space was not possible. Radiation treatment planning showed low rectal doses despite dose-escalation to the target. In accordance with this, acute rectal toxicity was mild without grade 2 events and there was complete resolution within four to twelve weeks. Conclusions This prospective study suggests that hydrogel injection is feasible and may prevent rectal toxicity in dose-escalated radiotherapy of prostate cancer. Further evaluation is necessary including the definition of patients who might benefit from this approach. Trial registration: German Clinical Trials Register DRKS00003273.
    BMC Cancer 01/2013; 13(1):27. DOI:10.1186/1471-2407-13-27 · 3.36 Impact Factor
  • Source
    • "IMRT has also proven an efficacious and safe method of treating head, neck, lung, central nervous system, breast, and prostate cancers [19-23]. While the method has been applied to cervical and endometrial cancers as well [17,18,24-31], the reported findings on its utility and safety in these patients have been controversial. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background To quantitatively evaluate the safety and related-toxicities of intensity modulated radiotherapy (IMRT) dose–volume histograms (DVHs), as compared to the conventional three-dimensional conformal radiotherapy (3D-CRT), in gynecologic malignancy patients by systematic review of the related publications and meta-analysis. Methods Relevant articles were retrieved from the PubMed, Embase, and Cochrane Library databases up to August 2011. Two independent reviewers assessed the included studies and extracted data. Pooled average percent irradiated volumes of adjacent non-cancerous tissues were calculated and compared between IMRT and 3D-CRT for a range of common radiation doses (5-45Gy). Results In total, 13 articles comprised of 222 IMRT-treated and 233 3D-CRT-treated patients were included. For rectum receiving doses ≥30 Gy, the IMRT pooled average irradiated volumes were less than those from 3D-CRT by 26.40% (30 Gy, p = 0.004), 27.00% (35 Gy, p = 0.040), 37.30% (40 Gy, p = 0.006), and 39.50% (45 Gy, p = 0.002). Reduction in irradiated small bowel was also observed for IMRT-delivered 40 Gy and 45 Gy (by 17.80% (p = 0.043) and 17.30% (p = 0.012), respectively), as compared with 3D-CRT. However, there were no significant differences in the IMRT and 3D-CRT pooled average percent volumes of irradiated small bowel or rectum from lower doses, or in the bladder or bone marrow from any of the doses. IMRT-treated patients did not experience more severe acute or chronic toxicities than 3D-CRT-treated patients. Conclusions IMRT-delivered high radiation dose produced significantly less average percent volumes of irradiated rectum and small bowel than 3D-CRT, but did not differentially affect the average percent volumes in the bladder and bone marrow.
    Radiation Oncology 11/2012; 7(1):197. DOI:10.1186/1748-717X-7-197 · 2.55 Impact Factor
Show more