Article

Antagonistic effects of TrkB and p75NTR on NMDA receptor currents in post‐synaptic densities transplanted into Xenopus oocytes

Laboratorio de Neurociencias, Universidad de Los Andes, Santiago, Chile.
Journal of Neurochemistry (Impact Factor: 4.24). 06/2007; 101(6):1672-84. DOI: 10.1111/j.1471-4159.2007.04519.x
Source: OAI

ABSTRACT Brain-derived neurotrophic factor (BDNF) and its receptor TrkB are essential regulators of synaptic function in the adult CNS. A TrkB-mediated effect at excitatory synapses is enhancement of NMDA receptor (NMDA-R)-mediated currents. Recently, opposing effects of TrkB and the pan-neurotrophin receptor p75(NTR) on long-term synaptic depression and long-term potentiation have been reported in the hippocampus. To further study the regulation of NMDA-Rs by neurotrophin receptors in their native protein environment, we micro-transplanted rat forebrain post-synaptic densities (PSDs) into Xenopus oocytes. One-minute incubations of oocytes with BDNF led to dual effects on NMDA-R currents: either TrkB-dependent potentiation or TrkB-independent inhibition were observed. Pro-nerve growth factor, a ligand for p75(NTR) but not for TrkB, produced a reversible, dose-dependent, TrkB-independent and p75(NTR)-dependent inhibition of NMDA-Rs. Fractionation experiments showed that p75(NTR) is highly enriched in the PSD protein fraction. Immunoprecipitation and pull-down experiments further revealed that p75(NTR) is a core component of the PSD, where it interacts with the PDZ3 domain of the scaffolding protein SAP90/PSD-95. Our data provide striking evidence for a rapid inhibitory effect of p75(NTR) on NMDA-R currents that antagonizes TrkB-mediated NMDA-R potentiation. These opposing mechanisms might be present in a large proportion of forebrain synapses and may contribute importantly to synaptic plasticity.

Download full-text

Full-text

Available from: Mauricio Sandoval, Jul 01, 2015
1 Follower
 · 
167 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nitric oxide (NO) has been proposed to down-regulate NMDA receptors (NMDA-Rs) in a homeostatic manner. However, NMDA-R-dependent NO synthesis also can cause excitotoxic cell death. Using bicuculline-stimulated hippocampal and cortical cell cultures, we have addressed the role of the brain-derived neurotrophic factor-NO pathway in NMDA-R down-regulation. This pathway protected cortical cells from NMDA-induced death and led to NMDA-R inhibition. In contrast, no evidence was gained for the presence of this protective pathway in hippocampal neurons, in which NMDA-induced NO synthesis was confirmed to be toxic. Therefore, opposing effects of NO depended on the activation of different signalling pathways. The pathophysiological relevance of this observation was investigated in synaptosomes and post-synaptic densities isolated from rat hippocampi and cerebral cortices following kainic acid-induced status epilepticus. In cortical, but not in hippocampal synaptosomes, brain-derived neurotrophic factor induced NO synthesis and inhibited NMDA-R currents present in isolated post-synaptic densities. In conclusion, we identified a NO-dependent homeostatic response in the rat cerebral cortex induced by elevated activity. A low performance of this pathway in brain areas including the hippocampus may be related to their selective vulnerability in pathologies such as temporal lobe epilepsy.
    Journal of Neurochemistry 06/2011; 118(5):760-72. DOI:10.1111/j.1471-4159.2011.07365.x · 4.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is involved in nerve growth and survival. Especially, a single nucleotide polymorphism (SNP) in the BDNF gene, Val66Met, has gained a lot of attention, because of its effect on activity-dependent BDNF secretion and its link to impaired memory processes. We hypothesize that the BDNF Val66Met polymorphism may have modulatory effects on the visual sensory (iconic) memory performance. Two hundred and eleven healthy German students (106 female and 105 male) were included in the data analysis. Since BDNF is also discussed to be involved in the pathogenesis of depression, we additionally tested for possible interactions with depressive mood. The BDNF Val66Met polymorphism significantly influenced iconic-memory performance, with the combined Val/Met-Met/Met genotype group revealing less time stability of information stored in iconic memory than the Val/Val group. Furthermore, this stability was positively correlated with depressive mood exclusively in the Val/Val genotype group. Thus, these results show that the BDNF Val66Met polymorphism has an effect on pre-attentive visual sensory memory processes.
    Neuropharmacology 11/2010; 60(2-3):467-71. DOI:10.1016/j.neuropharm.2010.10.028 · 4.82 Impact Factor