Article

Selective and nonselective packaging of cellular RNAs in retrovirus particles.

HIV Drug Resistance Program, National Cancer Institute-Frederick, P.O. Box B, Frederick, MD 21702-1201, USA.
Journal of Virology (Impact Factor: 5.08). 06/2007; 81(12):6623-31. DOI: 10.1128/JVI.02833-06
Source: PubMed

ABSTRACT Assembly of retrovirus particles normally entails the selective encapsidation of viral genomic RNA. However, in the absence of packageable viral RNA, assembly is still efficient, and the released virus-like particles (termed "Psi-" particles) still contain roughly normal amounts of RNA. We have proposed that cellular mRNAs replace the genome in Psi- particles. We have now analyzed the mRNA content of Psi- and Psi+ murine leukemia virus (MLV) particles using both microarray analysis and real-time reverse transcription-PCR. The majority of mRNA species present in the virus-producing cells were also detected in Psi- particles. Remarkably, nearly all of them were packaged nonselectively; that is, their representation in the particles was simply proportional to their representation in the cells. However, a small number of low-abundance mRNAs were greatly enriched in the particles. In fact, one mRNA species was enriched to the same degree as Psi+ genomic RNA. Similar results were obtained with particles formed from the human immunodeficiency virus type 1 (HIV-1) Gag protein, and the same mRNAs were enriched in MLV and HIV-1 particles. The levels of individual cellular mRNAs were approximately 5- to 10-fold higher in Psi- than in Psi+ MLV particles, in agreement with the idea that they are replacing viral RNA in the former. In contrast, signal recognition particle RNA was present at the same level in Psi- and Psi+ particles; a minor fraction of this RNA was weakly associated with genomic RNA in Psi+ MLV particles.

0 Bookmarks
 · 
57 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Uncoating of the HIV-1 core plays a critical role during early post-fusion stages of infection but is poorly understood. Microscopy-based assays are unable to easily distinguish between intact and partially uncoated viral cores. In this study, we used 5-ethynyl uridine (EU) to label viral-associated RNA during HIV production. At early time points after infection with EU-labeled virions, the viral-associated RNA was stained with an EU-specific dye and was detected by confocal microscopy together with viral proteins. We observed that detection of the viral-associated RNA was specific for EU-labeled virions, was detected only after viral fusion with target cells, and occurred after an initial opening of the core. In vitro staining of cores showed that the opening of the core allowed the small molecule dye, but not RNase A or antibodies, inside. Also, staining of the viral-associated RNA, which is co-localized with nucleocapsid, decays over time after viral infection. The decay rate of RNA staining is dependent on capsid (CA) stability, which was altered by CA mutations or a small molecule inducer of HIV-1 uncoating. While the staining of EU-labeled RNA was not affected by inhibition of reverse transcription, the kinetics of core opening of different CA mutants correlated with initiation of reverse transcription. Analysis of the E45A CA mutant suggests that initial core opening is independent of complete capsid disassembly. Taken together, our results establish a novel RNA accessibility-based assay that detects an early event in HIV-1 uncoating and can be used to further define this process.
    Retrovirology 07/2013; 10(1):70. · 5.66 Impact Factor
  • Virologica Sinica 04/2014; 29(2):133-5.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HIV-1, an enveloped RNA virus, produces viral particles that are known to be much more heterogeneous in size than is typical of non-enveloped viruses. We present here a novel strategy to study HIV-1 Viral Like Particles (VLP) assembly by measuring the size distribution of these purified VLPs and subsequent viral cores thanks to Atomic Force Microscopy imaging and statistical analysis. This strategy allowed us to identify whether the presence of viral RNA acts as a modulator for VLPs and cores size heterogeneity in a large population of particles. These results are analyzed in the light of a recently proposed statistical physics model for the self-assembly process. In particular, our results reveal that the modulation of size distribution by the presence of viral RNA is qualitatively reproduced, suggesting therefore an entropic origin for the modulation of RNA uptake by the nascent VLP.
    PLoS ONE 01/2014; 9(1):e83874. · 3.73 Impact Factor

Full-text

View
0 Downloads
Available from