14-3-3 Integrates prosurvival signals mediated by the AKT and MAPK pathways in ZNF198-FGFR1-transformed hematopoietic cells.

Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA.
Blood (Impact Factor: 10.43). 07/2007; 110(1):360-9. DOI: 10.1182/blood-2006-12-065615
Source: PubMed

ABSTRACT Human 8p11 stem cell leukemia/lymphoma syndrome usually presents as a myeloproliferative disorder (MPD) that evolves to acute myeloid leukemia and/or lymphoma. The syndrome associated with t(8;13)(p11;q12) results in expression of the ZNF198-FGFR1 fusion tyrosine kinase that plays a pathogenic role in hematopoietic transformation. We found that ZNF198-FGFR1 activated both the AKT and mitogen activated protein kinase (MAPK) prosurvival signaling pathways, resulting in elevated phosphorylation of the AKT target FOXO3a at T32 and BAD at S112, respectively. These phosphorylated residues subsequently sequestered the proapoptotic FOXO3a and BAD to 14-3-3 to prevent apoptosis. We used a peptide-based 14-3-3 competitive antagonist, R18, to disrupt 14-3-3-ligand association. Expression of R18 effectively induced apoptosis in hematopoietic Ba/F3 cells transformed by ZNF198-FGFR1 compared with control cells. Moreover, purified recombinant transactivator of transcription (TAT)-conjugated R18 proteins effectively transduced into human leukemia cells and induced significant apoptosis in KG-1a cells expressing FGFR1OP2-FGFR1 fusion tyrosine kinase but not in control HL-60 and Jurkat T cells. Surprisingly, R18 was only able to dissociate FOXO3a, but not BAD as previously proposed, from 14-3-3 binding and induced apoptosis partially through liberation and reactivation of FOXO3a. Our findings suggest that 14-3-3 integrates prosurvival signals in FGFR1 fusion-transformed hematopoietic cells. Disrupting 14-3-3-ligand association may represent an effective therapeutic strategy to treat 8p11 stem cell MPD.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Signal transducers and activators of transcription 3 (Stat3) has been reported to be involved in the pathogenesis of various human diseases and is constitutively active in human multiple myeloma (MM) U266 cells. The Stat3-regulated mechanisms involved in these processes, however, are not fully defined. To further understand the regulation of Stat3 activity, we performed a systematic proteomic analysis of Stat3 interacting proteins in U266 cells. This analysis, termed quantitative immunoprecipitation combined with knockdown (QUICK), combines RNAi, stable isotope labeling with amino acids in cell culture (SILAC), immunoprecipitation, and quantitative MS. As a result, quantitative mass spectrometry analysis allowed us to distinguish specific Stat3 interacting proteins from background proteins and led to the identification of a total of 38 proteins. Three Stat3 interacting proteins - 14-3-3ΞΆ, PRKCB and Hsp90 - were further confirmed by reciprocal co-immunoprecipitations and surface plasmon resonance (SPR) analysis. Our results therefore not only uncover a number of Stat3 interacting proteins that possess a variety of cellular functions, but also provide new insight into the mechanisms that regulate Stat3 activity and function in MM cells.
    Journal of proteomics 10/2011; 75(3):1055-66. DOI:10.1016/j.jprot.2011.10.020 · 3.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the role of STAT3 in cell physiology and tissue development has been largely investigated, its involvement in the development and maintenance of nervous tissue and in the mechanisms of neuroprotection is not yet known. The potentially wide range of STAT3 activities raises the question of tissue- and gender-specificity as putative mechanisms of regulation. To explore the function of STAT3 in the brain and the hypothesis of a gender-linked modulation of STAT3, we analyzed a neuron-specific STAT3 knockout mouse model investigating the influence of STAT3 activity in brain protein expression pattern in both males and females in the absence of neurological insult. We performed a proteomic study aimed to reveal the molecular pathways directly or indirectly controlled by STAT3 underscoring its role in brain development and maintenance. We identified several proteins, belonging to different neuronal pathways such as energy metabolism or synaptic transmission, controlled by STAT3 that confirm its crucial role in brain development and maintenance. Moreover, we investigated the different processes that could contribute to the sexual dimorphic behavior observed in the incidence of neurological and mental disease. Interestingly both STAT3 KO and gender factors influence the expression of several mitochondrial proteins conferring to mitochondrial activity high importance in the regulation of brain physiology and conceivable relevance as therapeutic target.
    Brain research 09/2010; 1362:1-12. DOI:10.1016/j.brainres.2010.09.074 · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Given that erythropoietin (EPO) is no longer believed to have exclusive biological activity in the hematopoietic system, EPO is now considered to have applicability in a variety of nervous system disorders that can overlap with vascular disease, metabolic impairments, and immune system function. As a result, EPO may offer efficacy for a broad number of disorders that involve Alzheimer's disease, cardiac insufficiency, stroke, trauma, and diabetic complications. During a number of clinical conditions, EPO is robust and can prevent metabolic compromise, neuronal and vascular degeneration, and inflammatory cell activation. Yet, use of EPO is not without its considerations especially in light of frequent concerns that may compromise clinical care. Recent work has elucidated a number of novel cellular pathways governed by EPO that can open new avenues to avert deleterious effects of this agent and offer previously unrecognized perspectives for therapeutic strategies. Obtaining greater insight into the role of EPO in the nervous system and elucidating its unique cellular pathways may provide greater cellular viability not only in the nervous system but also throughout the body.
    Progress in Neurobiology 07/2008; 85(2):194-213. DOI:10.1016/j.pneurobio.2008.02.002 · 10.30 Impact Factor