Article

Neurotrophin receptor immunoreactivity in the hippocampus of patients with mesial temporal lobe epilepsy.

Department of Medical Biology, Hacettepe University, Ankara, Turkey.
Neuropathology and Applied Neurobiology (Impact Factor: 4.84). 12/2004; 30(6):651-64. DOI:10.1111/j.1365-2990.2004.00582.x
Source: PubMed

ABSTRACT Recent evidence supports a critical role of neurotrophins in the regulation of both neuronal survival and synaptic transmission during epileptogenesis. We have examined the immunohistochemical expression of high- (tyrosine kinase receptors, trk) and low-affinity (p75) neurotrophin receptors (NTRs) in the hippocampal specimens from 18 patients with chronic temporal lobe epilepsy [TLE; 14 patients with hippocampal sclerosis (HS) and four with focal lesions (tumours) not involving the hippocampus proper]. Nonepileptic autopsy brains (n = 6) and surgical specimens from tumour patients without epilepsy (n = 3) were used as controls. Immunoreactivity (IR) for the trk receptors (trkA, trkB, trkC) was detected in normal human brain within the pyramidal neurones of hippocampal cornus ammoni (CA) regions and in the dentate gyrus. There were no detectable differences in the neuronal trk IR patterns in the hippocampus between control and TLE cases with HS, except for a decrease in neuronal density in regions where cell death had occurred (CA1, CA3 and CA4). In contrast, a consistent increase in trkA IR was observed in reactive astrocytes in CA1 and dentate gyrus. The low-affinity p75 neurotrophin receptor (p75(NTR)) was expressed in low levels in postnatal normal hippocampus. In contrast, neuronal p75(NTR) IR was detected in 10/14 cases of HS in spared neurones within the CA and hilar regions of the hippocampus. Double labelling revealed that p75(NTR)-positive neurones also contain trk receptor IR. In six cases with prominent glial activation strong p75(NTR) IR was observed in microglial cells within the sclerotic hippocampus. The present results indicate that changes in NTR expression are still detectable in the hippocampus of patients with chronic TLE and involve both glial and neuronal cells. Reactive astrocytes were immunoreactive for trkA, whereas activated microglia cells were reactive for p75(NTR), suggesting different functions for specific NTRs in the development of reactive gliosis. Moreover, the increased expression of p75(NTR) in hippocampal neurones of TLE patients may critically influence the neuronal survival during the epileptogenic process.

0 0
 · 
0 Bookmarks
 · 
53 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Several lines of evidence implicate BDNF in the pathophysiology of psychiatric illness. BDNF polymorphisms have also been associated with the risk of schizophrenia and mood disorders. We therefore investigated whether levels of (pro)BDNF and receptor proteins, TrkB and p75, are altered in hippocampus in schizophrenia and mood disorder and whether polymorphisms in each gene influenced protein expression. Formalin-fixed paraffin-embedded hippocampal sections from subjects with schizophrenia, major depressive disorder (MDD), bipolar disorder (BPD) and non-psychiatric controls were obtained from the Stanley Foundation Neuropathology Consortium. (pro)BDNF, TrkB(T1) and p75 protein densities were quantified by immunoautoradiography and DNA extracted from each subject was used to determine the effect of genotype on protein expression. In MDD, reductions in (pro)BDNF were seen in all layers of the right but not the left hippocampus with no changes in the dentate gyrus. The pattern was similar but less marked for BPD. In addition, BPD but not MDD patients, had bilateral reductions in p75 in hippocampal layers but not in dentate gyrus. No changes in TrkB(T1) density were seen in any diagnosis. These findings suggest MDD and BPD may share impairment in (pro)BDNF expression. However, BPD may involve impairments of both (pro)BDNF and p75 receptor, whereas MDD may involve impaired (pro)BDNF alone. Moreover, the lateralisation of changes may indicate a role of asymmetry in vulnerability to MDD. Hippocampal (pro)BDNF and receptor levels were also affected by genotype, suggesting that allelic variations are important in the hippocampal abnormalities seen in these psychiatric disorders.
    Journal of psychiatric research 05/2009; 43(14):1175-84. · 3.72 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The physiological functions of neurotrophins occur through binding to two receptors: pan75 neurotrophin receptor (p75(NTR)) and a family of tropomyosin receptor kinases (Trks A, B, and C). We recently reported that expression of neurotrophins and TrkB were reduced in brains of suicide subjects. This study examines whether expression and activation of Trk receptors and expression of p75(NTR) are altered in brain of these subjects. Expression levels of TrkA, B, C, and of p75(NTR) were measured by quantitative reverse transcription polymerase chain reaction and Western blot in prefrontal cortex (PFC) and hippocampus of suicide and normal control subjects. The activation of Trks was determined by immunoprecipitation followed by Western blotting using phosphotyrosine antibody. In hippocampus, lower mRNA levels of TrkA and TrkC were observed in suicide subjects. In the PFC, the mRNA level of TrkA was decreased, without any change in TrkC. However, the mRNA level of p75(NTR) was increased in both PFC and hippocampus. Immunolabeling studies showed similar results as observed for the mRNAs. In addition, phosphorylation of all Trks was decreased in hippocampus, but in PFC, decreased phosphorylation was noted only for TrkA and B. Increased expression ratios of p75(NTR) to Trks were also observed in PFC and hippocampus of suicide subjects. Our results suggest not only reduced functioning of Trks in brains of suicide subjects but also that increased ratios of p75(NTR) to Trks indicate possible activation of pathways that are apoptotic in nature. These findings may be crucial in the pathophysiology of suicide.
    Biological psychiatry 11/2008; 65(4):319-28. · 8.93 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: This study aims to investigate μ-calpain expression profiles in the anterior temporal neocortex in patients with intractable epilepsy, and to determine whether its pattern of expression is related to pathological changes seen in these patients. The study subjects consisted of 30 patients with intractable epilepsy and a control group of 10 patients with brain trauma who underwent resection of the anterior temporal lobe. μ-Calpain expression in surgically resected anterior temporal cortices of patients with intractable epilepsy were analyzed using the RT-PCR, Western blot, immunohistochemistry and immunofluorescence staining. GFAP expression was detected by immunohistochemical staining. The related pro-inflammatory cytokines were quantified by elisa. Clinicopathological characteristics were evaluated by HE staining. Analysis by Western blot and RT-PCR revealed that inactive μ-calpain expression and the calpain-cleaved spectrin fragment in surgically resected anterior temporal cortices of patients with intractable epilepsy were significantly increased compared to the tissues from corresponding regions of the control group. Immunohistological staining demonstrated that μ-calpain was overexpressed in the cell cytoplasm of neurons and glial cells in patients with intractable epilepsy and GFAP was overexpressed in the cell cytoplasm of glial cells in patients with intractable epilepsy. The level of pro-inflammatory cytokines, such as IL-1β, IL-6 and TGF-β1 were significantly increased in patients with intractable epilepsy. HE staining indicated μ-calpain overexpression is an independent prognostic factor for pathological changes such as neuronal loss, neuronal degeneration, gliosis and astrocytosis. These data suggest that overexpression of μ-calpain is relationship with intractable epilepsy as well as the clinicopathological characteristics in these patients.
    Seizure 02/2011; 20(5):395-401. · 2.00 Impact Factor