A chromosome bin map of 2148 expressed sequence tag loci of wheat homoeologous group 7.

Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58105, USA.
Genetics (Impact Factor: 4.87). 10/2004; 168(2):687-99. DOI: 10.1534/genetics.104.034850
Source: PubMed

ABSTRACT The objectives of this study were to develop a high-density chromosome bin map of homoeologous group 7 in hexaploid wheat (Triticum aestivum L.), to identify gene distribution in these chromosomes, and to perform comparative studies of wheat with rice and barley. We mapped 2148 loci from 919 EST clones onto group 7 chromosomes of wheat. In the majority of cases the numbers of loci were significantly lower in the centromeric regions and tended to increase in the distal regions. The level of duplicated loci in this group was 24% with most of these loci being localized toward the distal regions. One hundred nineteen EST probes that hybridized to three fragments and mapped to the three group 7 chromosomes were designated landmark probes and were used to construct a consensus homoeologous group 7 map. An additional 49 probes that mapped to 7AS, 7DS, and the ancestral translocated segment involving 7BS also were designated landmarks. Landmark probe orders and comparative maps of wheat, rice, and barley were produced on the basis of corresponding rice BAC/PAC and genetic markers that mapped on chromosomes 6 and 8 of rice. Identification of landmark ESTs and development of consensus maps may provide a framework of conserved coding regions predating the evolution of wheat genomes.


Available from: Mark E Sorrells, Apr 24, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stripe rust resistance gene YrC591, present in wheat cultivar C591, is effective against currently important Puccinia striiformis Westend. f. sp. tritici isolates in China. An F2:3 population (127 lines) was developed by crossing C591 with susceptible cultivar Taichung 29. Thirty four simple sequence repeat (SSR) and 155 sequence tagged site (STS) markers located on chromosome 7BL were used to perform bulk segregant analysis. Eight SSR markers, cfa2040, wmc273, wmc166, gwm984, barc32 wmc276, barc182 and gwm146, and 6 STS markers, mag1714, mag1757, mag1811, BE425120, BE471173 and BG607810, were polymorphic between the parents and contrasting resistant and susceptible DNA pools. F2:3 lines were genotyped with these polymorphic markers. Linkage analysis indicated that YrC591 was flanked by Xmag1714 and Xbarc182 with genetic distances of 1.2 and 0.4 cM, respectively. In addition, validation of the SSR markers cfa2040, wmc273 and barc32, and STS markers mag1714 and BE425120 was carried out using wheat lines with C591 as a parent, indicating that these markers should be effective in tracing this gene in marker-assisted selection.
    Euphytica 08/2014; 198(3). DOI:10.1007/s10681-014-1108-2 · 1.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most important wheat diseases in the world. In this study, a single dominant powdery mildew resistance gene MlIW172 was identified in the IW172 wild emmer accession and mapped to the distal region of chromosome arm 7AL (bin7AL-16-0.86-0.90) via molecular marker analysis. MlIW172 was closely linked with the RFLP probe Xpsr680-derived STS marker Xmag2185 and the EST markers BE405531 and BE637476. This suggested that MlIW172 might be allelic to the Pm1 locus or a new locus closely linked to Pm1. By screening genomic BAC library of durum wheat cv. Langdon and 7AL-specific BAC library of hexaploid wheat cv. Chinese Spring, and after analyzing genome scaffolds of Triticum urartu containing the marker sequences, additional markers were developed to construct a fine genetic linkage map on the MlIW172 locus region and to delineate the resistance gene within a 0.48 cM interval. Comparative genetics analyses using ESTs and RFLP probe sequences flanking the MlIW172 region against other grass species revealed a general co-linearity in this region with the orthologous genomic regions of rice chromosome 6, Brachypodium chromosome 1, and sorghum chromosome 10. However, orthologous resistance gene-like RGA sequences were only present in wheat and Brachypodium. The BAC contigs and sequence scaffolds that we have developed provide a framework for the physical mapping and map-based cloning of MlIW172.
    PLoS ONE 06/2014; 9(6):e100160. DOI:10.1371/journal.pone.0100160 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A total of 3,671 sequence contigs and scaffolds were mapped to deletion bins on wheat chromosome 7B providing a foundation for developing high-resolution integrated physical map for this chromosome. Bread wheat (Triticum aestivum L.) has a large, complex and highly repetitive genome which is challenging to assemble into high quality pseudo-chromosomes. As part of the international effort to sequence the hexaploid bread wheat genome by the international wheat genome sequencing consortium (IWGSC) we are focused on assembling a reference sequence for chromosome 7B. The successful completion of the reference chromosome sequence is highly dependent on the integration of genetic and physical maps. To aid the integration of these two types of maps, we have constructed a high-density deletion bin map of chromosome 7B. Using the 270 K Nimblegen comparative genomic hybridization (CGH) array on a set of cv. Chinese spring deletion lines, a total of 3,671 sequence contigs and scaffolds (~7.8 % of chromosome 7B physical length) were mapped into nine deletion bins. Our method of genotyping deletions on chromosome 7B relied on a model-based clustering algorithm (Mclust) to accurately predict the presence or absence of a given genomic sequence in a deletion line. The bin mapping results were validated using three different approaches, viz. (a) PCR-based amplification of randomly selected bin mapped sequences (b) comparison with previously mapped ESTs and (c) comparison with a 7B genetic map developed in the present study. Validation of the bin mapping results suggested a high accuracy of the assignment of 7B sequence contigs and scaffolds to the 7B deletion bins.
    Theoretical and Applied Genetics 08/2014; 127(9). DOI:10.1007/s00122-014-2358-z · 3.51 Impact Factor