Article

Endothelin 1 induces beta(1)Pix translocation and Cdc42 activation via protein kinase A-dependent pathway

Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
Journal of Biological Chemistry (Impact Factor: 4.6). 01/2005; 280(1):578-84. DOI: 10.1074/jbc.M411130200
Source: PubMed

ABSTRACT p21-activated kinase (Pak)-interacting exchange factor (Pix), a Rho family guanine nucleotide exchange factor (GEF), has been shown to co-localize with Pak and form activated Cdc42- and Rac1-driven focal complexes. In this study we have presented evidence that treatment of human mesangial cells (HMC) with endothelin 1 (ET-1) and stimulation of adenylate cyclase with either forskolin or with the cAMP analog 8-Br-cAMP activated the GTP loading of Cdc42. Transient expression of constitutively active G alpha(s) also stimulated Cdc42. In addition, overexpression of beta(1)Pix enhanced ET-1-induced Cdc42 activation, whereas the expression of beta(1)Pix SH3m(W43K), which lacks the ability to bind Pak, and beta(1)PixDHm(L238R/L239S), which lacks GEF activity, decreased ET-1-induced Cdc42 activation. Furthermore, ET-1 stimulation induced beta(1)Pix translocation to focal complexes. Interestingly, pretreatment of HMC with protein kinase A (PKA) inhibitors blocked both Cdc42 activation and beta(1)Pix translocation induced by ET-1, indicating the involvement of the PKA pathway. Through site-directed mutagenesis studies of consensus PKA phosphorylation sites and in vitro PKA kinase assay, we have shown that beta(1)Pix is phosphorylated by PKA. Using purified recombinant beta(1)Pix(wt) and beta(1)Pix mutants, we have identified Ser-516 and Thr-526 as the major phosphorylation sites by PKA. beta(1)Pix(S516A/T526A), in which both phosphorylation sites are replaced by alanine, blocks beta(1)Pix translocation and Cdc42 activation. Our results have provided evidence that stimulation of PKA pathway by ET-1 or cAMP analog results in beta(1)Pix phosphorylation, which in turn controls beta(1)Pix translocation to focal complexes and Cdc42 activation.

0 Followers
 · 
90 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glomerular mesangial cells are smooth muscle cell-like pericytes and are regarded as key players in kidney diseases. In an inflammatory setting, these cells produce high amounts of inflammatory cytokines, chemokines and redox mediators such as reactive oxygen species or nitric oxide (NO). The temporal production of ROS, NO and other redox mediators markedly contributes to the final outcome of inflammatory diseases. Recently, we reported that platelet-derived growth factor forced mesangial cells to activate the regulatory subunit of protein kinase A (PKA RI) by a redox-dependent mechanism but independent from changes in cyclic AMP. This prompted us to further analyse the dimerization of PKA RI and activation of PKA-driven signalling in an inflammatory context. Stimulation of rat mesangial cells with interleukin-1β and tumour necrosis factor-α [2 nM] induced the formation of PKA RI heterodimers in a time-dependent manner. PKA RI dimerization was accompanied with the formation of ROS, NO and peroxynitrite as well as a depletion of reduced glutathione. Furthermore, dimerization of PKA RI was paralleled by enhanced activity of PKA as shown by the phosphorylation of vasodilator-stimulated phosphoprotein (VASP) at serine 157 that was independent of the formation of cyclic AMP. Remarkably, exogenously administered peroxynitrite potently induced dimerization of PKA RI, whereas pharmacologic inhibition of inducible NO synthase (iNOS) and scavenging of peroxynitrite reduced PKA RI dimerization and VASP phosphorylation to control levels thus clearly indicating a causal role for endogenously formed peroxynitrite on PKA signalling. Consequently, the treatment of inflammatory diseases with anti-oxidants or NOS inhibitors may alter PKA activity.
    Biochemical Pharmacology 11/2014; DOI:10.1016/j.bcp.2014.11.009 · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein kinase C (PKC) has been implicated in the control of neurotransmitter release. The AS/AGU rat, which has a nonsense mutation in PKCγ, shows symptoms of parkinsonian syndrome, including dopamine release impairments in the striatum. Here, we found that the AS/AGU rat is PKCγ-knock-out (KO) and that PKCγ-KO mice showed parkinsonian syndrome. However, the PKCγ substrates responsible for the regulated exocytosis of dopamine in vivo have not yet been elucidated. To identify the PKCγ substrates involved in dopamine release, we used PKCγ-KO mice and a phosphoproteome analysis. We found 10 candidate phosphoproteins that had decreased phosphorylation levels in the striatum of PKCγ-KO mice. We focused on Pak-interacting exchange factor-β (βPIX), a Cdc42/Rac1 guanine nucleotide exchange factor, and found that PKCγ directly phosphorylates βPIX at Ser583 and indirectly at Ser340 in cells. Furthermore, we found that PKC phosphorylated βPIX in vivo. Classical PKC inhibitors and βPIX knock-down (KD) significantly suppressed Ca(2+)-evoked dopamine release in PC12 cells. Wild-type βPIX, and not the βPIX mutants Ser340 Ala or Ser583 Ala, fully rescued the decreased dopamine release by βPIX KD. Double KD of Cdc42 and Rac1 decreased dopamine release from PC12 cells. These findings indicate that the phosphorylation of βPIX at Ser340 and Ser583 has pivotal roles in Ca(2+)-evoked dopamine release in the striatum. Therefore, we propose that PKCγ positively modulates dopamine release through β2PIX phosphorylation. The PKCγ-βPIX-Cdc42/Rac1 phosphorylation axis may provide a new therapeutic target for the treatment of parkinsonian syndrome.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 07/2014; 34(28):9268-80. DOI:10.1523/JNEUROSCI.4278-13.2014 · 6.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rho-family GTPases govern distinct types of cell migration on different extracellular matrix proteins in tissue culture or three-dimensional (3D) matrices. We searched for mechanisms selectively regulating 3D cell migration in different matrix environments and discovered a form of Cdc42-RhoA crosstalk governing cell migration through a specific pair of GTPase activator and inhibitor molecules. We first identified βPix, a guanine nucleotide exchange factor (GEF), as a specific regulator of migration in 3D collagen using an affinity-precipitation-based GEF screen. Knockdown of βPix specifically blocks cell migration in fibrillar collagen microenvironments, leading to hyperactive cellular protrusion accompanied by increased collagen matrix contraction. Live FRET imaging and RNAi knockdown linked this βPix knockdown phenotype to loss of polarized Cdc42 but not Rac1 activity, accompanied by enhanced, de-localized RhoA activity. Mechanistically, collagen phospho-regulates βPix, leading to its association with srGAP1, a GTPase-activating protein (GAP), needed to suppress RhoA activity. Our results reveal a matrix-specific pathway controlling migration involving a GEF-GAP interaction of βPix with srGAP1 that is critical for maintaining suppressive crosstalk between Cdc42 and RhoA during 3D collagen migration.
    Nature Cell Biology 08/2014; 16(9):909-917. DOI:10.1038/ncb3026 · 20.06 Impact Factor