Inhibition of inducible nitric oxide synthase prevents LPS-induced acute lung injury in dogs.

First Department of Internal Medicine, Yokohama City University School of Medicine, Yokohama, Japan.
The Journal of Immunology (Impact Factor: 5.36). 03/1998; 160(6):3031-7.
Source: PubMed

ABSTRACT Nitric oxide (NO) is produced by inducible NO synthase (iNOS) after LPS stimulation, and reacts with superoxide to form peroxynitrite. We hypothesize that in LPS-induced lung injury, NO generated by iNOS plays a key role through the formation of peroxynitrite. We developed an acute lung injury dog model by injecting LPS, and examined the effects of selective iNOS inhibitors, aminoguanidine (AG) and S-methylisothiourea sulfate (SMT), on the LPS-induced lung injury. At 24 h after LPS injection, arterial oxygen tension and mean arterial pressure decreased, and shunt ratio and lung wet-to-dry weight ratio increased. On histology, the LPS group had marked neutrophil infiltration and widening of the alveolar septa. On immunohistochemistry, iNOS and nitrotyrosine, a major product of nitration of protein by peroxynitrite, were observed in the interstitium, capillary wall, and neutrophils in the airspaces of the LPS group. Treatments with AG and SMT prevented worsening of gas exchange, hemodynamics, and wet-to-dry weight ratio. On histology, AG and SMT treatments markedly suppressed lung injury, iNOS protein, and nitrotyrosine production. We conclude that NO released by iNOS may play a critical role in the pathogenesis of LPS-induced acute lung injury. This study suggests that iNOS inhibitors may have potential in the treatment of LPS-induced acute respiratory distress syndrome.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study investigated the anti-inflammatory effects of dichloromethane extract of Auricularia auricula-judae. Dichloromethane extract of Auricularia auricula-judae inhibited Lipopolysaccharide (LPS) -induced nitric oxide (NO) production significantly in a dose-dependent manner in the concentration ≥10 μg/ml (p < 0.05) . Furthermore, RT-PCR results of this study indicated that the extract markedly reduced the expressions of inflammatory cytokines (IL-6, TNF-α and IL-1β) mRNA in LPS-treated murine RAW 264.7 macrophages, which could possibly ameliorate the inflammation. Nevertheless, dichloromethane extract of Auricularia auricula-judae did not show complete inhibition of IL-6 mRNA expression. The inhibition of IL-1β cytokine at protein level was also observed in a dose dependent manner. In conclusion,the current study revealed the previously unknown effect of dichloromethane ethyl extract of Auricularia auricula-judae inhibitions of the production of NO, IL-6, TNF-α and IL-1β in LPS-stimulated macrophages.
    Toxicological research. 03/2011; 27(1):11-14.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT Background: Pulmonary ischemia-reperfusion (IR) is a biopathological event detectable in several clinical conditions, including lung transplantation, cardiopulmonary bypass, resuscitation, and pulmonary embolism. The understanding behind the activation of various inflammatory mediators regulating the apoptotic pathways remains largely unknown. We investigated the temporal expression of endothelial nitric oxide (eNOS), inducible (iNOS), and cyclooxygenase-2 (COX-2) proteins following lung-IR injury. Methods: Lung IR was induced in anesthetized rats. One hour ischemia was performed by clamping the left hilum. eNOS, iNOS, and COX-2 levels in the bronchoalveolar lavage (BAL) were measured at different time points after restoring lung perfusion in conjunction with histological changes and cellular apoptosis. Results: BAL-eNOS levels were increased as early as 3 hours post IR, attaining the highest values (5.5 U/mL) at 3 hours, compared to non-IR values (2.8 U/mL). BAL-iNOS increased at 3-hour post-IR (3 U/mL). iNOS reached the highest levels at 24 hours (4.5 U/mL) as compared to nonischemic lungs (1.8 U/mL). COX-2 peaked at 12 hours (.025 U/mL) compared to 3, 24, and 48 hours. Highest apoptotic rates were detected at 12 and 48 hours following IR. Conclusions: The time-associated involvement of eNOS, iNOS, and COX-2 enzymes during the evolution of IR injury may point to an early reaction of the NOSs system versus the COX-2. Similar patterns of enzymatic activity were previously shown in the context of lung IR injury. This temporal activation may indicate an involvement of eNOS in an early reparative response, and possibly the late-pathological response, mediated by the coinduction of iNOS-COX-2.
    Experimental Lung Research 12/2013; · 1.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A 12-year-old, 3.5-kg spayed female domestic shorthair cat had a tracheal mass identified as malignant B-cell lymphoma. The cat had tracheal resection and subsequently developed laryngeal paralysis. Due to multiple episodes of respiratory distress the cat subsequently had tracheal surgeries. Finally, the cat had a sudden onset of severe respiratory distress and collapsed. Computed tomography imaging and arterial blood gas analysis supported a diagnosis of acute lung injury.
    The Canadian veterinary journal. La revue veterinaire canadienne 04/2013; 54(4):381-386. · 0.47 Impact Factor


1 Download
Available from