Electrokinetic particle translocation through a nanopore containing a floating electrode.

Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA 23529-0247, USA.
Electrophoresis (Impact Factor: 3.16). 06/2011; 32(14):1864-74. DOI: 10.1002/elps.201100050
Source: PubMed

ABSTRACT Electrokinetic particle translocation through a nanopore containing a floating electrode is investigated by solving a continuum model, composed of the coupled Poisson-Nernst-Planck (PNP) equations for the ionic mass transport and the modified Stokes equations for the flow field. Two effects due to the presence of the floating electrode, the induced-charge electroosmosis (ICEO) and the particle-floating electrode electrostatic interaction, could significantly affect the electrokinetic mobility of DNA nanoparticles. When the electrical double layers (EDLs) of the DNA nanoparticle and the floating electrode are not overlapped, the particle-floating electrode electrostatic interaction becomes negligible. As a result, the DNA nanoparticle could be trapped near the floating electrode arising from the induced-charge electroosmosis when the applied electric field is relatively high. The presence of the floating electrode attracts more ions inside the nanopore resulting in an increase in the ionic current flowing through the nanopore; however, it has a limited effect on the deviation of the current from its base current when the particle is far from the pore.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The development of nanopore fabrication methods during the past decade has led to the resurgence of resistive-pulse analysis of nanoparticles. The newly developed resistive-pulse methods enable researchers to simultaneously study properties of a single nanoparticle and statistics of a large ensemble of nanoparticles. This review covers the basic theory and recent advances in applying resistive-pulse analysis and extends to more complex transport motion (e.g., stochastic thermal motion of a single nanoparticle) and unusual electrical responses (e.g., resistive-pulse response sensitive to surface charge), followed by a brief summary of numerical simulations performed in this field. We emphasize the forces within a nanopore governing translocation of low-aspect ratio, nondeformable particles but conclude by also considering soft materials such as liposomes and microgels. Expected final online publication date for the Annual Review of Analytical Chemistry Volume 7 is June 15, 2014. Please see for revised estimates.
    Annual Review of Analytical Chemistry (2008) 08/2013; · 7.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Induced-charge electro-osmotic (ICEO) flow of polymer-containing electrolyte solution around a cylindrical gold-coated stainless steel rod under AC electric field is measured by micro-particle image velocimetry (micro-PIV) for the first time. The ICEO flows as functions of the amount of non-ionic PEG (polyethylene glycol), cationic PDADMA (polydiallyldimethylammonium chloride), and anionic PVSASS (polyvinylsulfonic acid sodium salt) polymers added into the salt solution, frequency, and strength of the AC electric field are measured. The ICEO flow of polymer-containing fluid around the rod is quadrupolar with four vortices and is proportional to the square of imposed electric field. The ICEO flow velocity exponentially decreases with an increased concentration of neutral PEG. Ionic polyelectrolytes significantly increase ICEO velocities due to the enriched net charge within the induced electric double layer arising from the electrostatic interaction between the polarized rod’s surface and the charged polyelectrolytes in ionic polymer solution. In addition, polymer concentration affects the dependence of the ICEO flow on the frequency of AC electric field.
    Microfluidics and Nanofluidics 01/2013; 16(1-2). · 2.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Export Date: 29 April 2014, Source: Scopus, Art. No.: 021103, CODEN: JFEGA, Language of Original Document: English, Correspondence Address: Beskok, A.; Institute of Micro and Nanotechnology, Old Dominion University, Norfolk, VA 23529, United States; email:, References: Waghmare, P.R., Mitra, S.K., Investigation of combined electro-osmotic and pressure-driven flow in rough microchannels (2008) ASME J. Fluids Eng, 130 (6), p. 061204;
    Journal of Fluids Engineering 02/2013; 135(2). · 0.94 Impact Factor


Available from
May 29, 2014