Article

Lithium protects against oxidative stress-mediated cell death in α-synuclein-overexpressing in vitro and in vivo models of Parkinson's disease.

Buck Institute for Research on Aging, Novato, California 94945, USA.
Journal of Neuroscience Research (Impact Factor: 2.97). 06/2011; 89(10):1666-75. DOI: 10.1002/jnr.22700
Source: PubMed

ABSTRACT Lithium has recently been suggested to have neuroprotective properties in relation to several neurodegenerative diseases. In this study, we examined the potential cytoprotective effect of lithium in preventing oxidative stress-induced protein accumulation and neuronal cell death in the presence of increased α-synuclein levels in vitro and in vivo. Specifically, lithium administration was found to protect against cell death in a hydrogen peroxide-treated, stable α-synuclein-enhanced green fluorescent protein (EGFP)-overexpressing dopaminergic N27 cell line. Lithium feeding (0.255% lithium chloride) of 9-month-old pan-neuronal α-synuclein transgenic mice over a 3-month period was also sufficient to prevent accumulation of oxidized/nitrated α-synuclein as a consequence of chronic paraquat/maneb administration in multiple brain regions, including the glomerular layer, mitral cells, and the granule cell layer of the olfactory bulb (OB), striatum, substantia nigra pars compacta (SNpc) and Purkinje cells of the cerebellum. Lithium not only prevented α-synuclein-mediated protein accumulation/aggregation in these brain regions but also protected neuronal cells including mitral cells and dopaminergic SNpc neurons against oxidative stress-induced neurodegeneration. These results suggest that lithium can prevent both α-synuclein accumulation and neurodegeneration in an animal model of PD, suggesting that this drug, already FDA-approved for use in bipolar disorder, may constitute a novel therapy for another human disease.

0 Bookmarks
 · 
100 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lithium is a drug for treatment of bipolar disorder by correcting mania and reducing depressive mood swings.
    International journal of high risk behaviors & addiction. 01/2012; 1(2):66-70.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite significant advances in the study of the molecular mechanisms altered in the development and progression of neurodegenerative diseases (NDs), the etiology is still enigmatic and the distinctions between diseases are not always entirely clear. We present an efficient computational method based on protein-protein interaction network (PPI) to model the functional network of NDs. The aim of this work is fourfold: (i) reconstruction of a PPI network relating to the NDs, (ii) construction of an association network between diseases based on proximity in the disease PPI network, (iii) quantification of disease associations, and (iv) inference of potential molecular mechanism involved in the diseases. The functional links of diseases not only showed overlap with the traditional classification in clinical settings, but also offered new insight into connections between diseases with limited clinical overlap. To gain an expanded view of the molecular mechanisms involved in NDs, both direct and indirect connector proteins were investigated. The method uncovered molecular relationships that are in common apparently distinct diseases and provided important insight into the molecular networks implicated in disease pathogenesis. In particular, the current analysis highlighted the Toll-like receptor signaling pathway as a potential candidate pathway to be targeted by therapy in neurodegeneration.
    BioMed research international. 01/2014; 2014:686505.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hyperglycemia that occurs under the diabetic condition is a major cause of diabetic complications such as diabetic neuropathy, one of the most common diabetes-related complications. It is well known that hyperglycemia could result in generation of reactive oxygen species (ROS). Over production of ROS recommended as an important mediator for apoptotic signaling pathway as well as a key early event in the development of diabetic neuropathy. Recently, many studies have indicated that lithium has robust neuroprotective effect in relation to several neurodegenerative diseases. The present study aimed to examine effects of lithium on high glucose (HG)-induced neurotoxicity and to determine some of the underlying molecular mechanisms involved in this response in PC12 cells as a neuronal culture model for diabetic neuropathy. PC12 cells were pretreated with different concentrations of lithium for 7 days, exposed to HG for 24 h. Cell viability was measured by MTT assay. ROS and lipid peroxidation levels as well as superoxide dismutase activity were measured. In order to examine the underlying molecular mechanisms, the expressions of Bax, Bcl-2, Caspase-3, total and phosphorylated JNK and P38 MAPK were also analyzed by Western blotting. The present results indicated that pretreatment with 1 mM lithium has protected PC12 cells against HG-induced apoptotic cell death. It could reduce ROS generation, Bax/Bcl-2 ratio, Caspase-3 activation, and JNK and P38 MAPK phosphorylation. It may be concluded that in HG condition, lithium pretreatment could prevent mitochondrial apoptosis as well as JNK and P38 MAPK pathway in PC12 cells.
    Cellular and Molecular Neurobiology 07/2014; · 2.29 Impact Factor

Full-text (2 Sources)

Download
28 Downloads
Available from
Jun 4, 2014