Article

Disruption of adult expression of sexually selected traits by developmental exposure to bisphenol A.

Interdisciplinary Neuroscience Program, Bond Life Sciences Center, and Department of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 06/2011; 108(28):11715-20. DOI: 10.1073/pnas.1107958108
Source: PubMed

ABSTRACT Exposure to endocrine disrupting compounds (EDCs), such as bisphenol A (BPA), may cause adverse health effects in wildlife and humans, but controversy remains as to what traits are most sensitive to EDCs and might serve as barometers of exposure. Expression of sexually selected traits that have evolved through intrasexual competition for mates and intersexual choice of mating partner are more dependent on developmental and physical condition of an animal than naturally selected traits and thus might be particularly vulnerable to disruption by developmental exposure to EDCs. We have used the deer mouse (Peromyscus maniculatus) as a model to test this hypothesis. Adult male-male competition for mates in this species is supported by enhanced spatial navigational and exploratory abilities, which enable males to search for prospective, widely dispersed females. Male deer mice exposed to BPA or ethinyl estradiol (EE) through maternal diet showed no changes in external phenotype, sensory development, or adult circulating concentrations of testosterone and corticosterone, but spatial learning abilities and exploratory behaviors were severely compromised compared with control males. Because these traits are not sexually selected in females, BPA exposure predictably had no effect, although EE-exposed females demonstrated enhanced spatial navigational abilities. Both BPA-exposed and control females preferred control males to BPA-exposed males. Our demonstration that developmental exposure to BPA compromises cognitive abilities and behaviors essential for males to reproduce successfully has broad implications for other species, including our own. Thus, sexually selected traits might provide useful biomarkers to assess risk of environmental contamination in animal and human populations.

0 Followers
 · 
145 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Perinatal exposure to endocrine disrupting chemicals (EDCs) can induce promiscuous neurobehavioral disturbances. Bisphenol A and phthalates are two widely prevalent and persistent EDCs reported to lead to such effects. Parental and social behaviors are especially vulnerable to endocrine disruption, as these traits are programmed by the organizational-activational effects of testosterone and estrogen. Exposure to BPA and other EDCs disrupts normal maternal care provided by rodents and non-human primates, such as nursing, time she spends hunched over and in the nest, and grooming her pups. Paternal care may also be affected by BPA. No long-term study has linked perinatal exposure to BPA or other EDC and later parental behavioral deficits in humans. The fact that the same brain regions and neural hormone substrates govern parental behaviors in animal models and humans suggests that this suite of behaviors may also be vulnerable in the latter. Social behaviors, such as communication, mate choice, pair bonding, social inquisitiveness and recognition, play behavior, social grooming, copulation, and aggression, are compromised in animal models exposed to BPA, phthalates, and other EDCs. Early contact to these chemicals is also correlated with maladaptive social behaviors in children. These behavioral disturbances may originate by altering the fetal or adult gonadal production of testosterone or estrogen, expression of ESR1, ESR2, and AR in the brain regions governing these behaviors, neuropeptide/protein hormone (oxytocin, vasopressin, and prolactin) and their cognate neural receptors, and/or through epimutations. Robust evidence exists for all of these EDC-induced changes. Concern also exists for transgenerational persistence of such neurobehavioral disruptions. In sum, evidence for social and parental deficits induced by BPA, phthalates, and related chemicals is strongly mounting, and such effects may ultimately compromise the overall social fitness of populations to come.
    Frontiers in Neuroscience 03/2015; 9:57. DOI:10.3389/fnins.2015.00057
  • [Show abstract] [Hide abstract]
    ABSTRACT: Behavioral flexibility is a component of executive functioning that allows individuals to adapt to changing environmental conditions. Independent lines of research indicate that the mu opioid receptor (MOR) is an important mediator of behavioral flexibility and responses to psychosocial stress. The current study bridges these two lines of research and tests the extent to which social defeat and MOR affect behavioral flexibility and whether sex moderates these effects in California mice (Peromyscus californicus). Males and females assigned to social defeat or control conditions were tested in a Barnes maze. In males, defeat impaired behavioral flexibility but not acquisition. Female performance was unaffected by defeat. MOR binding in defeated and control mice in the orbitofrontal cortex (OFC), striatum and hippocampus was examined via autoradiography. Stressed males had reduced MOR binding in the OFC whereas females were unaffected. The MOR antagonist beta-funaltrexamine (1 mg/kg) impaired performance in males naïve to defeat during the reversal phase but had no effect on females. Finally, we examined the effects of the MOR agonist morphine (2.5 and 5 mg/kg) on stressed mice. As expected, morphine improved behavioral flexibility in stressed males. The stress-induced deficits in behavioral flexibility in males are consistent with a proactive coping strategy, including previous observations that stressed male California mice exhibit strong social approach and aggression. Our pharmacological data suggest that a down-regulation of MOR signaling in males may contribute to sex differences in behavioral flexibility following stress. This is discussed in the framework of coping strategies for individuals with mood disorders.
    European Journal of Neuroscience 01/2015; 41(4). DOI:10.1111/ejn.12824 · 3.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Di-(2-ethylhexyl) phthalate (DEHP) is an environmental endocrine disrupter. The present study investigated the effect of DEHP on emotional behavior of mice following perinatal exposure (10, 50, and 200mgkg(-1)d(-1)) from gestation day 7 through postnatal day 21. The results showed that, in pubertal males (6-w-old), DEHP decreased the time spent in the open arms and the number of entries into them in elevated plus maze and decreased the time in the mirrored chamber and in the light-box; in pubertal females, DEHP decreased the time spent in the open arms and the number of entries into them, suggesting that DEHP exposure made a anxiogenic effect in pubertal offspring regardless of sex. While DEHP effect on anxiety of adult (12-w-old) displayed sex differences, with decreased time spent in the open arms in the adult females. Perinatal exposure to DEPH significantly extended the time of immobility in forced swim task of pubertal offspring and adulthood regardless of sex. Furthermore, DEHP down-regulated the expressions of androgen receptor (AR) in pubertal male hippocampus and of estrogen receptor (ER) β in pubertal female and adult hippocampus of both sexes and inhibited the phosphorylation of ERK1/2 of hippocampus in pubertal mice and adult males. These results suggest that exposure to DEHP early in life affected the anxiety- and depressive-like behaviors of pubertal offspring and even adult. The disruption of gonadal hormones' modulation of behaviors due to down-regulation of AR or ERβ in the hippocampus may be associated with the aggravated anxiety- and depression-like status induced by DEHP. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Chemosphere 11/2014; 124. DOI:10.1016/j.chemosphere.2014.10.056 · 3.50 Impact Factor

Preview

Download
1 Download
Available from