Article

Disruption of adult expression of sexually selected traits by developmental exposure to bisphenol A.

Interdisciplinary Neuroscience Program, Bond Life Sciences Center, and Department of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 06/2011; 108(28):11715-20. DOI: 10.1073/pnas.1107958108
Source: PubMed

ABSTRACT Exposure to endocrine disrupting compounds (EDCs), such as bisphenol A (BPA), may cause adverse health effects in wildlife and humans, but controversy remains as to what traits are most sensitive to EDCs and might serve as barometers of exposure. Expression of sexually selected traits that have evolved through intrasexual competition for mates and intersexual choice of mating partner are more dependent on developmental and physical condition of an animal than naturally selected traits and thus might be particularly vulnerable to disruption by developmental exposure to EDCs. We have used the deer mouse (Peromyscus maniculatus) as a model to test this hypothesis. Adult male-male competition for mates in this species is supported by enhanced spatial navigational and exploratory abilities, which enable males to search for prospective, widely dispersed females. Male deer mice exposed to BPA or ethinyl estradiol (EE) through maternal diet showed no changes in external phenotype, sensory development, or adult circulating concentrations of testosterone and corticosterone, but spatial learning abilities and exploratory behaviors were severely compromised compared with control males. Because these traits are not sexually selected in females, BPA exposure predictably had no effect, although EE-exposed females demonstrated enhanced spatial navigational abilities. Both BPA-exposed and control females preferred control males to BPA-exposed males. Our demonstration that developmental exposure to BPA compromises cognitive abilities and behaviors essential for males to reproduce successfully has broad implications for other species, including our own. Thus, sexually selected traits might provide useful biomarkers to assess risk of environmental contamination in animal and human populations.

0 Followers
 · 
154 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The prenatal brain develops under the influence of an ever-changing hormonal milieu that includes endogenous fetal gonadal and adrenal hormones; placental and maternal hormones; and exogenous substances with hormonal activity that can cross the placental barrier. This review discusses the influences of endogenous fetal and maternal hormones on normal brain development, and potential consequences of pathophysiological hormonal perturbations to the developing brain, with particular reference to autism. We also consider the effects of hormonal pharmaceuticals used for assisted reproduction, the maintenance of pregnancy, the prevention of congenital adrenal hypertrophy, and hormonal contraceptives continued into an unanticipated pregnancy, among others. These treatments, while in some instances life-saving, may have unintended consequences on the developing fetuses. Additional concern is raised by fetal exposures to endocrine-disrupting chemicals (EDCs) encountered universally by pregnant women from food/water containers, contaminated food, household chemicals, and other sources. What are the potential outcomes of prenatal steroid perturbations on neurodevelopmental and behavioral disorders, including autism spectrum disorders? Our purposes here are: (i.) to summarize some consequences of steroid exposures during pregnancy for the development of brain and behavior in the offspring; (ii.) to summarize what is known about the relationships between exposures and behavior, including autism spectrum disorders; (iii.) to discuss the molecular underpinnings of such effects, especially molecular epigenetic mechanisms of prenatal steroid manipulations, a field that may explain effects of direct exposures, and even transgenerational effects; and (iv.) for all of these, to add cautionary notes about their interpretation in the name of scientific rigor.
    Endocrine Reviews 09/2014; DOI:10.1210/er.2013-1122 · 19.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mounting evidence suggests that environmental factors—in particular, those that we are exposed to during perinatal life—can dramatically shape the organism’s risk for later diseases, including neurobehavioral disorders. However, depending on the environmental insult, one sex may demonstrate greater vulnerability than the other sex. Herein, we focus on two well-defined extrinsic environmental factors that lead to sexually dimorphic behavioral differences in animal models and linkage in human epidemiological studies. These include maternal or psychosocial stress (such as social stress) and exposure to endocrine-disrupting compounds (such as one of the most prevalent, bisphenol A [BPA]). In general, the evidence suggests that early environmental exposures including BPA exposure and stress lead to more pronounced behavioral deficits in males than in females, whereas female neurobehavioral patterns are more vulnerable to later life stress. These findings highlight the importance of considering sex differences and developmental timing when examining the effects of environmental factors on later neurobehavioral outcomes.
    12/2014; 1(4). DOI:10.1007/s40572-014-0027-7
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Perinatal exposure to endocrine disrupting chemicals (EDCs) can induce promiscuous neurobehavioral disturbances. Bisphenol A and phthalates are two widely prevalent and persistent EDCs reported to lead to such effects. Parental and social behaviors are especially vulnerable to endocrine disruption, as these traits are programmed by the organizational-activational effects of testosterone and estrogen. Exposure to BPA and other EDCs disrupts normal maternal care provided by rodents and non-human primates, such as nursing, time she spends hunched over and in the nest, and grooming her pups. Paternal care may also be affected by BPA. No long-term study has linked perinatal exposure to BPA or other EDC and later parental behavioral deficits in humans. The fact that the same brain regions and neural hormone substrates govern parental behaviors in animal models and humans suggests that this suite of behaviors may also be vulnerable in the latter. Social behaviors, such as communication, mate choice, pair bonding, social inquisitiveness and recognition, play behavior, social grooming, copulation, and aggression, are compromised in animal models exposed to BPA, phthalates, and other EDCs. Early contact to these chemicals is also correlated with maladaptive social behaviors in children. These behavioral disturbances may originate by altering the fetal or adult gonadal production of testosterone or estrogen, expression of ESR1, ESR2, and AR in the brain regions governing these behaviors, neuropeptide/protein hormone (oxytocin, vasopressin, and prolactin) and their cognate neural receptors, and/or through epimutations. Robust evidence exists for all of these EDC-induced changes. Concern also exists for transgenerational persistence of such neurobehavioral disruptions. In sum, evidence for social and parental deficits induced by BPA, phthalates, and related chemicals is strongly mounting, and such effects may ultimately compromise the overall social fitness of populations to come.
    Frontiers in Neuroscience 03/2015; 9:57. DOI:10.3389/fnins.2015.00057

Preview

Download
1 Download
Available from