Article

Systems analysis identifies an essential role for SHANK-associated RH domain-interacting protein (SHARPIN) in macrophage Toll-like receptor 2 (TLR2) responses

Seattle Biomedical Research Institute, Seattle, WA 98109, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 06/2011; 108(28):11536-41. DOI: 10.1073/pnas.1107577108
Source: PubMed

ABSTRACT Precise control of the innate immune response is essential to ensure host defense against infection while avoiding inflammatory disease. Systems-level analyses of Toll-like receptor (TLR)-stimulated macrophages suggested that SHANK-associated RH domain-interacting protein (SHARPIN) might play a role in the TLR pathway. This hypothesis was supported by the observation that macrophages derived from chronic proliferative dermatitis mutation (cpdm) mice, which harbor a spontaneous null mutation in the Sharpin gene, exhibited impaired IL-12 production in response to TLR activation. Systems biology approaches were used to define the SHARPIN-regulated networks. Promoter analysis identified NF-κB and AP-1 as candidate transcription factors downstream of SHARPIN, and network analysis suggested selective attenuation of these pathways. We found that the effects of SHARPIN deficiency on the TLR2-induced transcriptome were strikingly correlated with the effects of the recently described hypomorphic L153P/panr2 point mutation in Ikbkg [NF-κB Essential Modulator (NEMO)], suggesting that SHARPIN and NEMO interact. We confirmed this interaction by co-immunoprecipitation analysis and furthermore found it to be abrogated by panr2. NEMO-dependent signaling was affected by SHARPIN deficiency in a manner similar to the panr2 mutation, including impaired p105 and ERK phosphorylation and p65 nuclear localization. Interestingly, SHARPIN deficiency had no effect on IκBα degradation and on p38 and JNK phosphorylation. Taken together, these results demonstrate that SHARPIN is an essential adaptor downstream of the branch point defined by the panr2 mutation in NEMO.

Download full-text

Full-text

Available from: Owen M Siggs, Aug 11, 2015
0 Followers
 · 
129 Views
  • Source
    • "In TLR signaling pathways, it appears that SHARPIN is selectively required for the phosphorylation of p105 but is dispensable for phosphorylation or degradation of IkBa (Zak et al. 2011). Furthermore, a mutation in NEMO, which abrogates binding of the LUBAC complex, also does not affect TLR-induced phosphorylation and degradation of IkBa (Zak et al. 2011). While several studies have demonstrated contributions of LUBAC to the stabilization of TNFR1 family signaling complexes , outstanding questions remain for this recently identified component of inflammatory signaling pathways (see the text). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability to sense and adjust to the environment is crucial to life. For multicellular organisms, the ability to respond to external changes is essential not only for survival but also for normal development and physiology. Although signaling events can directly modify cellular function, typically signaling acts to alter transcriptional responses to generate both transient and sustained changes. Rapid, but transient, changes in gene expression are mediated by inducible transcription factors such as NF-κB. For the past 25 years, NF-κB has served as a paradigm for inducible transcription factors and has provided numerous insights into how signaling events influence gene expression and physiology. Since its discovery as a regulator of expression of the κ light chain gene in B cells, research on NF-κB continues to yield new insights into fundamental cellular processes. Advances in understanding the mechanisms that regulate NF-κB have been accompanied by progress in elucidating the biological significance of this transcription factor in various physiological processes. NF-κB likely plays the most prominent role in the development and function of the immune system and, not surprisingly, when dysregulated, contributes to the pathophysiology of inflammatory disease. As our appreciation of the fundamental role of inflammation in disease pathogenesis has increased, so too has the importance of NF-κB as a key regulatory molecule gained progressively greater significance. However, despite the tremendous progress that has been made in understanding the regulation of NF-κB, there is much that remains to be understood. In this review, we highlight both the progress that has been made and the fundamental questions that remain unanswered after 25 years of study.
    Genes & development 02/2012; 26(3):203-34. DOI:10.1101/gad.183434.111 · 12.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: There remains a pressing need for an efficacious vaccine to combat HIV. The burgeoning fields of systems biology and innate immunity, as harnessed in systems vaccinology, promise to accelerate the discovery process and meet this need. The tools of systems biology are increasingly employed to define innate immune responses to vaccination and thereby unmask early signaling events that control induced adaptive immunity. These studies involve a wide array of measurements, including transcriptomics and proteomics, and a wide array of biological systems, from in-vitro stimulated murine innate immune cells to whole blood collected from vaccinated human donors. Each measurement and each system offers unique insights as well as special limitations and challenges. A holistic consideration of the models available for intensive HIV systems vaccinology analysis identifies a suite of interlocking opportunities and constraints. Although the murine system enables detailed mechanistic analysis, vaccine efficacy cannot be assessed in this model. Systems analysis of blood donated by vaccinated humans permits identification of immunogenicity signatures and biomarkers, but deriving direct mechanisms from these indirect measurements is precarious. The goals of HIV systems vaccinology may be best met by judicious integration of in vitro, in vivo (murine and nonhuman primate), and human clinical analyses.
    Current opinion in HIV and AIDS 11/2011; 7(1):58-63. DOI:10.1097/COH.0b013e32834ddd31 · 4.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The covalent attachment of ubiquitin molecules to target proteins is a posttranslational modification that is involved not only in signaling processes leading to protein degradation but also in those resulting in activation, proliferation, and cell death. Ubiquitination is a versatile regulation mechanism: In addition to single ubiquitin molecules, chains consisting of several ubiquitin moieties can also be attached to target proteins. The functional outcome of polyubiquitination depends on the lysine residue within ubiquitin that is used for chain elongation. The reason for this is that the particular linkage between two ubiquitin moieties through a specific lysine residue of one ubiquitin and the C terminus of the other ubiquitin creates a unique binding surface that is specifically recognized by specialized ubiquitin-binding domains. New evidence indicates that besides the seven internal lysine residues of ubiquitin, the N terminus of ubiquitin can also be used as an attachment point, thereby generating linear or M1-linked polyubiquitin chains. An E3 complex consisting of HOIL-1, HOIP, and Sharpin specifically generates such M1-linked ubiquitin chains in the context of various cellular signaling pathways that regulate cell activation and death, and it was named linear ubiquitin chain assembly complex (LUBAC). In this Review, we focus on the biochemistry and physiological role of linear ubiquitin chains generated by LUBAC. We summarize the function of linear ubiquitin chains in signaling pathways downstream of diverse cellular signaling events and provide an outlook on promising future directions of research.
    Science Signaling 12/2011; 4(204):re5. DOI:10.1126/scisignal.2002187 · 7.65 Impact Factor
Show more