Article

Systems analysis identifies an essential role for SHANK-associated RH domain-interacting protein (SHARPIN) in macrophage Toll-like receptor 2 (TLR2) responses.

Seattle Biomedical Research Institute, Seattle, WA 98109, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 06/2011; 108(28):11536-41. DOI: 10.1073/pnas.1107577108
Source: PubMed

ABSTRACT Precise control of the innate immune response is essential to ensure host defense against infection while avoiding inflammatory disease. Systems-level analyses of Toll-like receptor (TLR)-stimulated macrophages suggested that SHANK-associated RH domain-interacting protein (SHARPIN) might play a role in the TLR pathway. This hypothesis was supported by the observation that macrophages derived from chronic proliferative dermatitis mutation (cpdm) mice, which harbor a spontaneous null mutation in the Sharpin gene, exhibited impaired IL-12 production in response to TLR activation. Systems biology approaches were used to define the SHARPIN-regulated networks. Promoter analysis identified NF-κB and AP-1 as candidate transcription factors downstream of SHARPIN, and network analysis suggested selective attenuation of these pathways. We found that the effects of SHARPIN deficiency on the TLR2-induced transcriptome were strikingly correlated with the effects of the recently described hypomorphic L153P/panr2 point mutation in Ikbkg [NF-κB Essential Modulator (NEMO)], suggesting that SHARPIN and NEMO interact. We confirmed this interaction by co-immunoprecipitation analysis and furthermore found it to be abrogated by panr2. NEMO-dependent signaling was affected by SHARPIN deficiency in a manner similar to the panr2 mutation, including impaired p105 and ERK phosphorylation and p65 nuclear localization. Interestingly, SHARPIN deficiency had no effect on IκBα degradation and on p38 and JNK phosphorylation. Taken together, these results demonstrate that SHARPIN is an essential adaptor downstream of the branch point defined by the panr2 mutation in NEMO.

Full-text

Available from: Owen M Siggs, Jun 03, 2015
0 Followers
 · 
124 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recombinant adenoviral vectors (rAds) are lead vaccine candidates for protection against a variety of pathogens, including Ebola, HIV, tuberculosis, and malaria, due to their ability to potently induce T cell immunity in humans. However, the ability to induce protective cellular immunity varies among rAds. Here, we assessed the mechanisms that control the potency of CD8 T cell responses in murine models following vaccination with human-, chimpanzee-, and simian-derived rAds encoding SIV-Gag antigen (Ag). After rAd vaccination, we quantified Ag expression and performed expression profiling of innate immune response genes in the draining lymph node. Human-derived rAd5 and chimpanzee-derived chAd3 were the most potent rAds and induced high and persistent Ag expression with low innate gene activation, while less potent rAds induced less Ag expression and robustly induced innate immunity genes that were primarily associated with IFN signaling. Abrogation of type I IFN or stimulator of IFN genes (STING) signaling increased Ag expression and accelerated CD8 T cell response kinetics but did not alter memory responses or protection. These findings reveal that the magnitude of rAd-induced memory CD8 T cell immune responses correlates with Ag expression but is independent of IFN and STING and provide criteria for optimizing protective CD8 T cell immunity with rAd vaccines.
    Journal of Clinical Investigation 02/2015; 125(3). DOI:10.1172/JCI78280 · 13.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Variation in the presentation of hereditary immunodeficiencies may be explained by genetic or environmental factors. Patients with mutations in HOIL1 (RBCK1) present with amylopectinosis-associated myopathy with or without hyper-inflammation and immunodeficiency. We report that barrier-raised HOIL-1-deficient mice exhibit amylopectin-like deposits in the myocardium but show minimal signs of hyper-inflammation. However, they show immunodeficiency upon acute infection with Listeria monocytogenes, Toxoplasma gondii or Citrobacter rodentium. Increased susceptibility to Listeria was due to HOIL-1 function in hematopoietic cells and macrophages in production of protective cytokines. In contrast, HOIL-1-deficient mice showed enhanced control of chronic Mycobacterium tuberculosis or murine γ-herpesvirus 68 (MHV68), and these infections conferred a hyper-inflammatory phenotype. Surprisingly, chronic infection with MHV68 complemented the immunodeficiency of HOIL-1, IL-6, Caspase-1 and Caspase-1;Caspase-11-deficient mice following Listeria infection. Thus chronic herpesvirus infection generates signs of auto-inflammation and complements genetic immunodeficiency in mutant mice, highlighting the importance of accounting for the virome in genotype-phenotype studies.
    eLife Sciences 01/2015; 4. DOI:10.7554/eLife.04494 · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ubiquitination, also denoted ubiquitylation, is a posttranslational modification that has been implicated in the regulation of both innate and adaptive immune responses. Ubiquitination plays crucial roles in innate immune signaling by ensuring the proper orchestration of several signaling mediators that constitute a functional immune response. Herein, we briefly summarize the latest discoveries concerning the molecular ubiquitination-related machinery that senses, assembles, and disassembles innate immune signaling mediators. Introduction The mammalian immune system, which involves a complex yet tightly regulated network of interactions among different types of cells, cell receptors, and signaling pathways, constantly battles invading pathogens. In addition to the aforementioned immune-system participants, its specificity and complexity also depend on posttranslational modifications of proteins involved in the initiation, maintenance, and termination of immune responses. These posttranslational modifications involve the addition of a chemical group or another protein(s) at one or more site of substrate. To date, more than 200 types of posttranslational modifications have been reported (Kho et al., 2004); with phosphorylation, ubiquitination, and sumoylation being the most extensively studied and well characterized. Ubiquitination is a key posttranslational modification regulating numerous biological processes at various cellular levels, e.g., protein trafficking, the cell cycle, and immune responses. The addition of ubiquitin to a substrate protein usually involves three main steps: activation by a ubiquitin-activating enzyme (E1), conjugation by a
    Current issues in molecular biology 01/2016; 18:1-10. · 6.00 Impact Factor