Article

Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice.

Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 06/2011; 108(28):11548-53. DOI: 10.1073/pnas.1108924108
Source: PubMed

ABSTRACT Vertebrates typically harbor a rich gastrointestinal microbiota, which has coevolved with the host over millennia and is essential for several host physiological functions, in particular maturation of the immune system. Recent studies have highlighted the importance of a single bacterial species, segmented filamentous bacteria (SFB), in inducing a robust T-helper cell type 17 (Th17) population in the small-intestinal lamina propria (SI-LP) of the mouse gut. Consequently, SFB can promote IL-17-dependent immune and autoimmune responses, gut-associated as well as systemic, including inflammatory arthritis and experimental autoimmune encephalomyelitis. Here, we exploit the incomplete penetrance of SFB colonization of NOD mice in our animal facility to explore its impact on the incidence and course of type 1 diabetes in this prototypical, spontaneous model. There was a strong cosegregation of SFB positivity and diabetes protection in females, but not in males, which remained relatively disease-free regardless of the SFB status. In contrast, insulitis did not depend on SFB colonization. SFB-positive, but not SFB-negative, females had a substantial population of Th17 cells in the SI-LP, which was the only significant, repeatable difference in the examined T-cell compartments of the gut, pancreas, or systemic lymphoid tissues. Th17-signature transcripts dominated the very limited SFB-induced molecular changes detected in SI-LP CD4(+) T cells. Thus, a single bacterium, and the gut immune system alterations associated with it, can either promote or protect from autoimmunity in predisposed mouse models, probably reflecting their variable dependence on different Th subsets.

0 Bookmarks
 · 
85 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The microbiota plays a fundamental role on the induction, training, and function of the host immune system. In return, the immune system has largely evolved as a means to maintain the symbiotic relationship of the host with these highly diverse and evolving microbes. When operating optimally, this immune system-microbiota alliance allows the induction of protective responses to pathogens and the maintenance of regulatory pathways involved in the maintenance of tolerance to innocuous antigens. However, in high-income countries, overuse of antibiotics, changes in diet, and elimination of constitutive partners, such as nematodes, may have selected for a microbiota that lack the resilience and diversity required to establish balanced immune responses. This phenomenon is proposed to account for some of the dramatic rise in autoimmune and inflammatory disorders in parts of the world where our symbiotic relationship with the microbiota has been the most affected.
    Cell 03/2014; 157(1):121-141. · 31.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The microbiota represents the complex collections of microbial communities that colonize a host. In health, the microbiota is essential for metabolism, protection against pathogens and maturation of the immune system. In return, the immune system determines the composition of the microbiota. Altered microbial composition (dysbiosis) has been correlated with a number of diseases in humans. The tight reciprocal immune/microbial interactions complicate determining whether dysbiosis is a cause and/or a consequence of immune dysregulation and disease initiation or progression. However, a number of studies in germ-free and antibiotic-treated animal models support causal roles for intestinal bacteria in disease susceptibility. The role of the microbiota in transplant recipients is only starting to be investigated and its study is further complicated by putative contributions of both recipient and donor microbiota. Moreover, both flora may be affected directly or indirectly by immunosuppressive drugs and antimicrobial prophylaxis taken by transplant patients, as well as by inflammatory processes secondary to ischemia/reperfusion and allorecognition, and the underlying cause of end-organ failure. Whether the ensuing dysbiosis affects alloresponses and whether therapies aimed at correcting dysbiosis should be considered in transplant patients constitutes an exciting new field of research.
    American Journal of Transplantation 05/2014; · 6.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Given mounting evidence of the importance of gut-microbiota/immune-cell interactions in immune homeostasis and responsiveness, surprisingly little is known about leukocyte movements to, and especially from, the gut. We address this topic in a minimally perturbant manner using Kaede transgenic mice, which universally express a photoconvertible fluorescent reporter. Transcutaneous exposure of the cervical lymph nodes to violet light permitted punctual tagging of immune cells specifically therein, and subsequent monitoring of their immigration to the intestine; endoscopic flashing of the descending colon allowed specific labeling of intestinal leukocytes and tracking of their emigration. Our data reveal an unexpectedly broad movement of leukocyte subsets to and from the gut at steady state, encompassing all lymphoid and myeloid populations examined. Nonetheless, different subsets showed different trafficking proclivities (e.g., regulatory T cells were more restrained than conventional T cells in their exodus from the cervical lymph nodes). The novel endoscopic approach enabled us to evidence gut-derived Th17 cells in the spleens of K/BxN mice at the onset of their genetically determined arthritis, thereby furnishing a critical mechanistic link between the intestinal microbiota, namely segmented filamentous bacteria, and an extraintestinal autoinflammatory disease.
    Proceedings of the National Academy of Sciences 04/2014; · 9.81 Impact Factor

Full-text

View
1 Download
Available from