Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice.

Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 06/2011; 108(28):11548-53. DOI: 10.1073/pnas.1108924108
Source: PubMed

ABSTRACT Vertebrates typically harbor a rich gastrointestinal microbiota, which has coevolved with the host over millennia and is essential for several host physiological functions, in particular maturation of the immune system. Recent studies have highlighted the importance of a single bacterial species, segmented filamentous bacteria (SFB), in inducing a robust T-helper cell type 17 (Th17) population in the small-intestinal lamina propria (SI-LP) of the mouse gut. Consequently, SFB can promote IL-17-dependent immune and autoimmune responses, gut-associated as well as systemic, including inflammatory arthritis and experimental autoimmune encephalomyelitis. Here, we exploit the incomplete penetrance of SFB colonization of NOD mice in our animal facility to explore its impact on the incidence and course of type 1 diabetes in this prototypical, spontaneous model. There was a strong cosegregation of SFB positivity and diabetes protection in females, but not in males, which remained relatively disease-free regardless of the SFB status. In contrast, insulitis did not depend on SFB colonization. SFB-positive, but not SFB-negative, females had a substantial population of Th17 cells in the SI-LP, which was the only significant, repeatable difference in the examined T-cell compartments of the gut, pancreas, or systemic lymphoid tissues. Th17-signature transcripts dominated the very limited SFB-induced molecular changes detected in SI-LP CD4(+) T cells. Thus, a single bacterium, and the gut immune system alterations associated with it, can either promote or protect from autoimmunity in predisposed mouse models, probably reflecting their variable dependence on different Th subsets.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Gut microbiota regulated imbalances in the host's immune profile seem to be an important factor in the etiology of type 1 diabetes (T1D), and identifying bacterial markers for T1D may therefore be useful in diagnosis and prevention of T1D. The aim of the present study was to investigate the link between the early gut microbiota and immune parameters of non-obese diabetic (NOD) mice in order to select alleged bacterial markers of T1D. Gut microbial composition in feces was analyzed with 454/FLX Titanium (Roche) pyro-sequencing and correlated with diabetes onset age and immune cell populations measured in diabetic and non-diabetic mice at thirty weeks of age. The early gut microbiota composition was found to be different between NOD mice that later in life were classified as diabetic or non-diabetic. Those differences were further associated with changes in FoxP3(+) regulatory T cells, CD11b(+) dendritic cells, and IFN-γ production. The model proposed in this work suggests that operational taxonomic units classified to S24-7, Prevotella, and an unknown Bacteriodales (all Bacteroidetes) act in favor of diabetes protection whereas members of Lachnospiraceae, Ruminococcus, and Oscillospira (all Firmicutes) promote pathogenesis.
    Gut Microbes 02/2015; DOI:10.1080/19490976.2015.1011876
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several lines of evidence suggest a role for the gut microbiome in type 1 diabetes. Treating diabetes-prone rodents with probiotics or antibiotics prevents the development of the disorder. Diabetes-prone rodents also have a distinctly different gut microbiome compared with healthy rodents. Recent studies in children with a high genetic risk for type 1 diabetes demonstrate significant differences in the gut microbiome between children who develop autoimmunity for the disease and those who remain healthy. However, the differences in microbiome composition between autoimmune and healthy children are not consistent across all studies because of the strong environmental influences on microbiome composition, particularly diet and geography. Controlling confounding factors of microbiome composition uncovers bacterial associations with disease. For example, in a human cohort from a single Finnish city where geography is confined, a strong association between one dominant bacterial species, Bacteroides dorei, and type 1 diabetes was discovered (Davis-Richardson et al. Front Microbiol 2014;5:678). Beyond this, recent DNA methylation analyses suggest that a thorough epigenetic analysis of the gut microbiome may be warranted. These studies suggest a testable model whereby a diet high in fat and gluten and low in resistant starch may be the primary driver of gut dysbiosis. This dysbiosis may cause a lack of butyrate production by gut bacteria, which, in turn, leads to the development of a permeable gut followed by autoimmunity. The bacterial community responsible for these changes in butyrate production may vary around the world, but bacteria of the genus Bacteroides are thought to play a key role.
    Diabetologia 05/2015; DOI:10.1007/s00125-015-3614-8 · 6.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hyperglycemia associated with type 1 diabetes is a consequence of immune-mediated destruction of insulin producing pancreatic β-cells. While it is apparent that both CD8(+) T cells and TH1 cells are key contributors to type 1 diabetes, the function of TH17 cells in disease onset and progression remains unclear. The nuclear receptors retinoic acid receptor-related orphan receptors alpha and gamma t (RORα and RORγt) play critical roles in the development of TH17 cells and ROR-specific synthetic ligands have proven efficacy in several mouse models of autoimmunity. To investigate the roles and therapeutic potential for targeting the RORs in type 1 diabetes, we administered SR1001, a selective RORα/γ inverse agonist, to non-obese diabetic (NOD) mice. SR1001 significantly reduced diabetes incidence and insulitis in treated mice. Furthermore, SR1001 reduced pro-inflammatory cytokine expression, particularly TH17-mediated cytokines, reduced autoantibody production, and increased the frequency of CD4(+)Foxp3(+) T regulatory cells. These data suggest that TH17 cells may have a pathological role in the development of type 1 diabetes and use of ROR-specific synthetic ligands targeting this cell type may prove utility as a novel treatment for type 1 diabetes.
    Endocrinology 01/2015; 156(3):en20141677. DOI:10.1210/en.2014-1677 · 4.64 Impact Factor


1 Download
Available from