Article

Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice.

Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 06/2011; 108(28):11548-53. DOI: 10.1073/pnas.1108924108
Source: PubMed

ABSTRACT Vertebrates typically harbor a rich gastrointestinal microbiota, which has coevolved with the host over millennia and is essential for several host physiological functions, in particular maturation of the immune system. Recent studies have highlighted the importance of a single bacterial species, segmented filamentous bacteria (SFB), in inducing a robust T-helper cell type 17 (Th17) population in the small-intestinal lamina propria (SI-LP) of the mouse gut. Consequently, SFB can promote IL-17-dependent immune and autoimmune responses, gut-associated as well as systemic, including inflammatory arthritis and experimental autoimmune encephalomyelitis. Here, we exploit the incomplete penetrance of SFB colonization of NOD mice in our animal facility to explore its impact on the incidence and course of type 1 diabetes in this prototypical, spontaneous model. There was a strong cosegregation of SFB positivity and diabetes protection in females, but not in males, which remained relatively disease-free regardless of the SFB status. In contrast, insulitis did not depend on SFB colonization. SFB-positive, but not SFB-negative, females had a substantial population of Th17 cells in the SI-LP, which was the only significant, repeatable difference in the examined T-cell compartments of the gut, pancreas, or systemic lymphoid tissues. Th17-signature transcripts dominated the very limited SFB-induced molecular changes detected in SI-LP CD4(+) T cells. Thus, a single bacterium, and the gut immune system alterations associated with it, can either promote or protect from autoimmunity in predisposed mouse models, probably reflecting their variable dependence on different Th subsets.

0 Bookmarks
 · 
94 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diabetes is a condition of multifactorial origin, involving several molecular mechanisms related to the intestinal microbiota for its development. In type 2 diabetes, receptor activation and recognition by microorganisms from the intestinal lumen may trigger inflammatory responses, inducing the phosphorylation of serine residues in insulin receptor substrate-1, reducing insulin sensitivity. In type 1 diabetes, the lowered expression of adhesion proteins within the intestinal epithelium favours a greater immune response that may result in destruction of pancreatic beta cells by CD8+ T-lymphocytes, and increased expression of interleukin-17, related to autoimmunity. Research in animal models and humans has hypothesized whether the administration of probiotics may improve the prognosis of diabetes through modulation of gut microbiota. We have shown in this review that a large body of evidence suggests probiotics reduce the inflammatory response and oxidative stress, as well as increase the expression of adhesion proteins within the intestinal epithelium, reducing intestinal permeability. Such effects increase insulin sensitivity and reduce autoimmune response. However, further investigations are required to clarify whether the administration of probiotics can be efficiently used for the prevention and management of diabetes.
    Nutrition journal. 06/2014; 13(1):60.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The emergence of Th17 cells as a unique sub-population of CD4(+) T cells has revolutionized the current understanding of adaptive immune system and autoimmune diseases. Th17 cells are characterized by the expression of effector cytokines IL-17A, IL-17F, IL-21 and IL-22, and lineage specific transcription factor ROR-C in human and ROR-γt in mice. Generation and differentiation of Th17 cells from naive CD4(+) T cells is driven by transforming growth factor (TGF)-β, IL-6, IL-23, IL-1β and IL-21. Recent studies suggest that the pathogenicity of Th17 cells is determined by the presence of IL-23 and TGF-β3 in local micro-environment. Emerging reports highlight the importance of T-helper cell plasticity in pathogenesis of various autoimmune diseases. Th17 cells exhibit significant plasticity and converted to Th1-like cells under pathogenic conditions. Albeit growing body of evidences stating a pathogenic role for Th17 cells in autoimmune diabetes, conflicting reports also state an indifferent or protective role for Th17 cells. The operating mechanisms modulating Th17 immune response in autoimmune diabetes remain elusive. This review discusses recent advances in the understanding of transcriptional and post-transcriptional mechanisms of Th17 polarization, factors influencing pathogenicity of Th17 cells, molecular mechanisms of Th17/Th1 and Treg/Th17 plasticity and implications of these phenomena in autoimmune diabetes. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Cytokine 12/2014; · 2.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A close relationship exists between gut microbiota and immune responses. An imbalance of this relationship can determine local and systemic immune diseases. In fact the immune system plays an essential role in maintaining the homeostasis with the microbiota that normally resides in the gut, while, at the same time, the gut microbiota influences the immune system, modulating number and function of effector and regulatory T cells. To achieve this aim, mutual regulation between immune system and microbiota is achieved through several mechanisms, including the engagement of toll-like receptors (TLRs), pathogen-specific receptors expressed on numerous cell types. TLRs are able to recognize ligands from commensal or pathogen microbiota to maintain the tolerance or trigger the immune response. In this review, we summarize the latest evidences about the role of TLRs expressed in adaptive T cells, to understand how the immune system promotes intestinal homeostasis, fights invasion by pathogens, and is modulated by the intestinal microbiota.
    Research Journal of Immunology 07/2014; 2014:8.

Full-text

Download
1 Download
Available from