Article

Genetic variation in IGF2 and HTRA1 and breast cancer risk among BRCA1 and BRCA2 carriers.

Department of Population Sciences, the Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
Cancer Epidemiology Biomarkers &amp Prevention (Impact Factor: 4.56). 06/2011; 20(8):1690-702. DOI: 10.1158/1055-9965.EPI-10-1336
Source: PubMed

ABSTRACT BRCA1 and BRCA2 mutation carriers have a lifetime breast cancer risk of 40% to 80%, suggesting the presence of risk modifiers. We previously identified significant associations in genetic variants in the insulin-like growth factor (IGF) signaling pathway. Here, we investigate additional IGF signaling genes as risk modifiers for breast cancer development in BRCA carriers.
A cohort of 1,019 BRCA1 and 500 BRCA2 mutation carriers were genotyped for 99 single-nucleotide polymorphisms (SNP) in 13 genes. Proportional hazards regression was used to model time from birth to diagnosis of breast cancer for BRCA1 and BRCA2 carriers separately. For linkage disequilibrium (LD) blocks with multiple SNPs, an additive genetic model was used. For an SNP analysis, no additivity assumptions were made.
Significant associations were found between risk of breast cancer and LD blocks in IGF2 for BRCA1 and BRCA2 mutation carriers (global P values of 0.009 for BRCA1 and 0.007 for BRCA2), HTRA1 for BRCA1 carriers (global P value of 0.005), and MMP3 for BRCA2 carriers (global P = 0.0000007 for BRCA2).
We identified significant associations of genetic variants involved in IGF signaling. With the known interaction of BRCA1 and IGF signaling and the loss of PTEN in a majority of BRCA1 tumors, this suggests that signaling through AKT may modify breast cancer risk in BRCA1 carriers.
These results suggest potential avenues for future research targeting the IGF signaling pathway in modifying risk in BRCA1and BRCA2 mutation carriers.

0 Bookmarks
 · 
137 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Breast cancer is the most common cancer in women worldwide. Studies have shown that the high temperature requirement factor A3 (HtrA3) is involved in important physiological processes including maintenance of mitochondrial homeostasis, cell death, and cell signaling. HtrA3 is reported to be downregulated in several cancers and has been correlated with advancing cancer stage. We performed a retrospective study using our breast cancer tissue bank to investigate whether the expression of HtrA3 correlated with lymphatic metastasis in breast cancer and whether the expression of HtrA3 was correlated with estrogen receptor (ER) and progesterone receptor (PR) expression in breast cancer. Breast cancer tissues from 156 invasive ductal breast cancer patients with or without lymphatic metastasis were collected and the levels of HtrA3 were measured by immunohistochemistry and western blotting. The expression of HtrA3 was lower in breast cancer. In particular, HtrA3 expression in breast cancer with lymphatic metastasis was lower than that in breast cancer without lymphatic metastasis. In breast cancers with no lymphatic metastasis, the expression of HtrA3 was lower in patients with ER- and PR-positive tumors, but when breast cancers with lymphatic metastasis were analyzed, there was no difference in HtrA3 expression between ER- and PR-positive or ER- and PR-negative tumors. These data suggest that the expression of HtrA3 was negatively correlated with lymphatic metastasis in breast cancer but not correlated with ER and PR positivity or negativity. A better understanding of the mechanism of HtrA3 may provide the basis for future development of a novel therapeutic target in breast cancer.
    Tumor Biology 06/2013; · 2.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to characterize the prevalence of insulin-like growth factor 1 receptor (IGF1R) mutations, single nucleotide polymorphisms (SNP), and protein overexpression in surgically resected non-small cell lung cancers in relation to patient characteristics and prognosis. This retrospective study was conducted on 304 patients with non-small cell lung cancers who underwent curative pulmonary resection (median follow-up for surviving patients, 3.6 years). IGF1R gene alterations (n = 304) and protein expression (n = 181) were evaluated by polymerase chain reaction-based assays and immunohistochemistry, respectively. Membranous and cytoplasmic staining were analyzed separately. In an exploratory analysis, 1 silent mutation in exon 16 and 3 mutations in introns of the IGF1R gene comprising the tyrosine kinase domain were detected. Moreover, evaluating selected IGF1R SNPs, patients with adenocarcinomas and homozygous for the rs8038415 T-allele had a significantly better survival (P = .025) but no different disease-free survival. Regarding expression, membranous but not cytoplasmic IGF1R staining was higher in squamous cell carcinomas versus other histologies (P < .0001) and showed a trend to longer survival (P = .08). No association between SNP variations and protein expression was found. Membranous IGF1R protein expression is higher in squamous cell versus other histologies but does not correlate with prognosis. SNPs and mutations can be detected and may harbor prognostic value. These alterations may be of interest when evaluating the IGF1R as potential therapeutic target and should receive further research.
    Human pathology 01/2014; · 3.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The insulin-like growth factor (IGF) system has a direct effect on cellular proliferation and survival, and interacts with genetic and environmental factors implicated in causing cancer. Experimental, clinical, and epidemiological evidence show that the IGF signalling pathways are important mediators in the biochemical and molecular chain of events that lead from a phenotypically normal cell to one harbouring neoplastic traits. BRCA1 and BRCA2 have an important role in the development of hereditary and sporadic breast and ovarian cancer. Recent evidence suggests that risk of cancer conferred by BRCA mutations can be modified by genetic and environmental factors, including ambient concentrations of IGF-1 and polymorphisms in IGF system components. This Review addresses interactions between the IGF and BRCA1 signalling pathways, and emphasises the convergence of IGF-1-mediated cell survival, proliferative pathways, and BRCA1-mediated tumour protective pathways. Understanding the complex interactions between these signalling pathways might improve our understanding of basic molecular oncology processes and help to identify new molecular targets, predictive biomarkers, and approaches for optimising cancer therapies.
    The Lancet Oncology 12/2012; 13(12):E537-44. · 25.12 Impact Factor

Full-text (2 Sources)

View
16 Downloads
Available from
Jun 1, 2014