B73-Mo17 near-isogenic lines demonstrate dispersed structural variation in maize.

Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA.
Plant physiology (Impact Factor: 7.39). 06/2011; 156(4):1679-90. DOI: 10.1104/pp.111.174748
Source: PubMed

ABSTRACT Recombinant inbred lines developed from the maize (Zea mays ssp. mays) inbreds B73 and Mo17 have been widely used to discover quantitative trait loci controlling a wide variety of phenotypic traits and as a resource to produce high-resolution genetic maps. These two parents were used to produce a set of near-isogenic lines (NILs) with small regions of introgression into both backgrounds. A novel array-based genotyping platform was used to score genotypes of over 7,000 loci in 100 NILs with B73 as the recurrent parent and 50 NILs with Mo17 as the recurrent parent. This population contains introgressions that cover the majority of the maize genome. The set of NILs displayed an excess of residual heterozygosity relative to the amount expected based on their pedigrees, and this excess residual heterozygosity is enriched in the low-recombination regions near the centromeres. The genotyping platform provided the ability to survey copy number variants that exist in more copies in Mo17 than in B73. The majority of these Mo17-specific duplications are located in unlinked positions throughout the genome. The utility of this population for the discovery and validation of quantitative trait loci was assessed through analysis of plant height variation.


Available from: Cheng-Ting Yeh, Jan 29, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Long term selection experiments bring unique insights on the genetic architecture of quantitative traits and their evolvability. Indeed, they are utilized to (i) monitor changes in allele frequencies and assess the effects of genomic regions involved traits determinism; (ii) evaluate the role of standing variation versus new mutations during adaptation; (iii) investigate the contribution of non allelic interactions. Here we describe genetic and phenotypic evolution of two independent Divergent Selection Experiments (DSEs) for flowering time conducted during 16 years from two early maize inbred lines. Results Our experimental design uses selfing as the mating system and small population sizes, so that two independent families evolved within each population, Late and Early. Observed patterns are strikingly similar between the two DSEs. We observed a significant response to selection in both directions during the first 7 generations of selection. Within Early families, the response is linear through 16 generations, consistent with the maintenance of genetic variance. Within Late families and despite maintenance of significant genetic variation across 17 generations, the response to selection reached a plateau after 7 generations. This plateau is likely caused by physiological limits. Residual heterozygosity in the initial inbreds can partly explain the observed responses as evidenced by 42 markers derived from both Methyl-Sensitive Amplification- and Amplified Fragment Length- Polymorphisms. Among the 42, a subset of 13 markers most of which are in high linkage disequilibrium, display a strong association with flowering time variation. Their fast fixation throughout DSEs’ pedigrees results in strong genetic differentiation between populations and families. Conclusions Our results reveal a paradox between the sustainability of the response to selection and the associated dearth of polymorphisms. Among other hypotheses, we discuss the maintenance of heritable variation by few mutations with strong epistatic interactions whose effects are modified by continuous changes of the genetic background through time. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0382-5) contains supplementary material, which is available to authorized users.
    BMC Evolutionary Biology 06/2015; 15. DOI:10.1186/s12862-015-0382-5 · 3.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Modern plant breeding is considered a discipline originating from the science of genetics. It is a complex subject, involving the use of many interdisciplinary modern sciences and technologies that became art, science and business. Revolutionary developments in plant genetics and genomics and coupling plant "omics" achievements with advances on computer science and informatics, as well as laboratory robotics further resulted in unprecedented developments in modern plant breeding, enriching the traditional breeding practices with precise, fast, efficient and cost-effective breeding tools and approaches. The objective of this Plant Breeding book is to present some of the recent advances of 21st century plant breeding, exemplifying novel views, approaches, research efforts, achievements, challenges and perspectives in breeding of some crop species. The book chapters have presented the latest advances and comprehensive information on selected topics that will enhance the reader's knowledge of contemporary plant breeding.
    Edited by Ibrokhim Y. Abdurakhmonov, 01/2012; Intech., ISBN: ISBN 978-953-307-932-5
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A small fast neutron (FN) mutant population has been established from Phaseolus vulgaris cv. Red Hawk. We leveraged the available P. vulgaris genome sequence and high throughput next generation DNA sequencing to examine the genomic structure of five P. vulgaris cv. Red Hawk FN mutants with striking visual phenotypes. Analysis of these genomes identified three classes of structural variation (SV); between cultivar variation, natural variation within the FN mutant population, and FN induced mutagenesis. Our analyses focused on the latter two classes. We identified 23 large deletions (>40 bp) common to multiple individuals, illustrating residual heterogeneity and regions of SV within the common bean cv. Red Hawk. An additional 18 large deletions were identified in individual mutant plants. These deletions, ranging in size from 40 bp to 43,000 bp, are potentially the result of FN mutagenesis. Six of the 18 deletions lie near or within gene coding regions, identifying potential candidate genes causing the mutant phenotype.
    Frontiers in Plant Science 06/2013; 4:210. DOI:10.3389/fpls.2013.00210 · 3.64 Impact Factor