Graphene-based immunosensor for electrochemical quantification of phosphorylated p53 (S15)

Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, PR China.
Analytica chimica acta (Impact Factor: 4.51). 08/2011; 699(1):44-8. DOI: 10.1016/j.aca.2011.05.010
Source: PubMed


We reported a graphene-based immunosensor for electrochemical quantification of phosphorylated p53 on serine 15 (phospho-p53(15)), a potential biomarker of gamma-radiation exposure. The principle is based on sandwich immunoassay and the resulting immunocomplex is formed among phospho-p53 capture antibody, phospho-p53(15) antigen, biotinylated phospho-p53(15) detection antibody and horseradish peroxidase (HRP)-labeled streptavidin. The introduced HRP results in an electrocatalytic response to reduction of hydrogen peroxide in the presence of thionine. Graphene served as sensor platform not only promotes electron transfer, but also increases the surface area to introduce a large amount of capture antibody, thus increasing the detection sensitivity. The experimental conditions including blocking agent, immunoreaction time and substrate concentration have been optimized. Under the optimum conditions, the increase of response current is proportional to the phospho-p53(15) concentration in the range of 0.2-10 ng mL(-1), with the detection limit of 0.1 ng mL(-1). The developed immunosensor exhibits acceptable stability and reproducibility and the assay results for phospho-p53(15) are in good correlation with the known values. This easily fabricated immunosensor provides a new promising tool for analysis of phospho-p53(15) and other phosphorylated proteins.

Download full-text


Available from: Dan Du,
  • Source
    • "TH has been used to induce photodynamic inactivation of bladder cancer cells, Escherichia coli, and Saccharomyces cerevisiae [17]. The biological activity of TH has also been employed in graphene-based inmuno sensors [18]. In addition to its favorable applications, TH possess mutagenic activity in eukaryotic cells, demonstrating its potential cytotoxic and genotoxic activity in prokaryotic cells and photo induced mutagenic action upon binding to DNA [19] [20] [21]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In the present investigation, we have elucidated the interaction between thionine (TH) and bovine hemoglobin (BHb) under physiological conditions by using absorption, emission, time resolved fluorescence, synchronous fluorescence, circular dichroism (CD) and three dimensional emission (3D) spectral studies. Molecular docking experiment was also carried out to establish the possible binding site of TH on BHb. The emission spectral studies revealed that, TH have the ability to bind with BHb and form a ground state complex via static quenching process. The calculated binding constant and the number of binding sites was found to be 3.65×10(4)dm(3)mol(-1) and 1.04, respectively. Förster Resonance Energy Transfer (FRET) theory was employed to calculate the distance (r) between donor (BHb) and acceptor (TH) as 3.64nm. Furthermore, the conformational changes of BHb induced by TH complexation showed some degree of structural unfolding. In addition, molecular docking study confirmed that the most probable binding site of TH was located within the active cavity constituted by α1 and α2 subunits of BHb.
    Journal of photochemistry and photobiology. B, Biology 01/2014; 131C:43-52. DOI:10.1016/j.jphotobiol.2014.01.001 · 2.96 Impact Factor
  • Source
    • "As a result, many researchers have made efforts to increase the solubility of GS. Thus, the water-soluble polymers, such as polyvinylpyrrolidone [16], polypyrrole (PPy) [17], chitosan [18,19] and Nafion [20,21] were used as dispersants to prepare homogeneous GS solutions, while the introduction of these polymers could promote electron transfer well. Significantly, some scientists have found that graphene-based composite materials, such as, gold nanoparticles and 1-pyrenebutyric acid-functionalized grapheme [22], graphene/polyaniline nanocomposite [23], AuNPs/PDDA-G [24], AuNPs decorated graphene (AuNPs-GS) [25] and MWCNTs-GS composites [26] are a useful approach. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, an amperometric immunosensor for the detection of carbofuran was developed. Firstly, multiwall carbon nanotubes (MWCNTs) and graphene sheets-ethyleneimine polymer-Au (GS-PEI-Au) nanocomposites were modified onto the surface of a glass carbon electrode (GCE) via self-assembly. The nanocomposites can increase the surface area of the GCE to capture a large amount of antibody, as well as produce a synergistic effect in the electrochemical performance. Then the modified electrode was coated with gold nanoparticles-antibody conjugate (AuNPs-Ab) and blocked with BSA. The monoclonal antibody against carbofuran was covalently immobilized on the AuNPs with glutathione as a spacer arm. The morphologies of the GS-PEI-Au nanocomposites and the fabrication process of the immunosensor were characterized by X-ray diffraction (XRD), ultraviolet and visible absorption spectroscopy (UV-vis) and scanning electron microscopy (SEM), respectively. Under optimal conditions, the immunosensor showed a wide linear range, from 0.5 to 500 ng/mL, with a detection limit of 0.03 ng/mL (S/N = 3). The as-constructed immunosensor exhibited notable performance features such as high specificity, good reproducibility, acceptable stability and regeneration performance. The results are mainly due to the excellent properties of MWCNTs, GS-PEI-Au nanocomposites and the covalent immobilization of Ab with free hapten binding sites for further immunoreaction. It provides a new avenue for amperometric immunosensor fabrication.
    Sensors 04/2013; 13(4):5286-301. DOI:10.3390/s130405286 · 2.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Toxoplasma gondii-specific IgM (Tg-IgM) is a sensitive and reliable marker for early diagnosing toxoplasmosis infection in pregnant women. In this study, a disposable amperometric immunosensor for sensitive detecting Tg-IgM was constructed based on graphene (GP) and CeO2-Au nanoparticle. The GP was treated with chitosan (CS) to obtain a stable graphene-chitosan (GPCS) composite membrane. The CeO2-Au nanoparticle which was used for the preparation of the amperometric immunosensor was synthesized by the hydrothermal method. GPCS composite membrane was first assembled onto the screen-printed carbon electrode (SPCE) for adsorbing the Ceo(2)-Au nanoparticle. The toxoplasma gondii antigen (Tg-Ag) was subsequently adsorbed by CeO2-Au nanoparticle to obtain the proposed immunosensor. Scanning electron microscope (SEM) and transmission electron microscope (TEM) were employed to characterize the construction process of the immunosensor. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) were used to study the electrochemical properties of the immunosensor. The results indicated that, CS employed in this study improved the dispersion and homogeneity of GP, as well as enhance the stability of the proposed immunosensor. The use of GPCS composite membrane and CeO2-Au nanoparticle had good conductivity and prominent biocompatibility, which excellently improved the sensitivity of the immunosensor. In the optimal conditions, the proposed immunosensor can be applied to quantify the concentration of Tg-IgM in a wide linear range from 7.5 x 10(-4) AU.mL(-1) to 24 AU.mL(-1) with a correlation coefficient of -0.998 and a low detection limit of 4.4 x 10(-4) AU.mL(-1) (S/N=3). The novel proposed immunosensor for detecting Tg-IgM in human serum specimens with satisfactory results had also been proved. In addition, the Tg-IgM contents determined by the immunosensor agreed well with the ELISA measurement. Furthermore, the proposed amperometric immunosensor exhibited some advantages, such as high selectivity, long-term stability, good repeatability, low sample consumable, and short analysis time, which were suitable for detecting toxoplasma infection in pregnant women.
    Acta Chimica Sinica -Chinese Edition- 10/2012; 70(19):2085. DOI:10.6023/A12050257 · 1.43 Impact Factor
Show more