NanoRNAs: A Class of Small RNAs That Can Prime Transcription Initiation in Bacteria

Department of Genetics and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA.
Journal of Molecular Biology (Impact Factor: 3.96). 06/2011; 412(5):772-81. DOI: 10.1016/j.jmb.2011.06.015
Source: PubMed

ABSTRACT It has been widely assumed that all transcription in cells occur using NTPs only (i.e., de novo). However, it has been known for several decades that both prokaryotic and eukaryotic RNA polymerases can utilize small (2 to ∼5 nt) RNAs to prime transcription initiation in vitro, raising the possibility that small RNAs might also prime transcription initiation in vivo. A new study by Goldman et al. has now provided the first evidence that priming with so-called "nanoRNAs" (i.e., 2 to ∼5 nt RNAs) can, in fact, occur in vivo. Furthermore, this study provides evidence that altering the extent of nanoRNA-mediated priming of transcription initiation can profoundly influence global gene expression. In this perspective, we summarize the findings of Goldman et al. and discuss the prospect that nanoRNA-mediated priming of transcription initiation represents an underappreciated aspect of gene expression in vivo.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Streptomyces coelicolor is a model for studying bacteria renowned as the foremost source of natural products used clinically. Post-genomic studies have revealed complex patterns of gene expression and links to growth, morphological development and individual genes. However, the underlying regulation remains largely obscure, but undoubtedly involves steps after transcription initiation. Here we identify sites involved in RNA processing and degradation as well as transcription within a nucleotide-resolution map of the transcriptional landscape. This was achieved by combining RNA-sequencing approaches suited to the analysis of GC-rich organisms. Escherichia coli was analysed in parallel to validate the methodology and allow comparison. Previously, sites of RNA processing and degradation had not been mapped on a transcriptome-wide scale for E. coli. Through examples, we show the value of our approach and datasets. This includes the identification of new layers of transcriptional complexity associated with several key regulators of secondary metabolism and morphological development in S. coelicolor and the identification of host-encoded leaderless mRNA and rRNA processing associated with the generation of specialised ribosomes in E. coli. New regulatory small RNAs were identified for both organisms. Overall the results illustrate the diversity in mechanisms used by different bacterial groups to facilitate and regulate gene expression.
    Molecular Microbiology 09/2014; DOI:10.1111/mmi.12810 · 5.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DHH superfamily includes RecJ, nanoRNases (NrnA), cyclic nucleotide phosphodiesterases and pyrophosphatases. In this study, we have carried out in vitro and in vivo investigations on the bifunctional NrnA-homolog from Mycobacterium smegmatis, MSMEG_2630. The crystal structure of MSMEG_2630 was determined to 2.2-Å resolution and reveals a dimer consisting of two identical subunits with each subunit folding into an N-terminal DHH domain and a C-terminal DHHA1 domain. The overall structure and fold of the individual domains is similar to other members of DHH superfamily. However, MSMEG_2630 exhibits a distinct quaternary structure in contrast to other DHH phosphodiesterases. This novel mode of subunit packing and variations in the linker region that enlarge the domain interface are responsible for alternate recognitions of substrates in the bifunctional nanoRNases. MSMEG_2630 exhibits bifunctional 3'-5' exonuclease [on both deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) substrates] as well as CysQ-like phosphatase activity (on pAp) in vitro with a preference for nanoRNA substrates over single-stranded DNA of equivalent lengths. A transposon disruption of MSMEG_2630 in M. smegmatis causes growth impairment in the presence of various DNA-damaging agents. Further phylogenetic analysis and genome organization reveals clustering of bacterial nanoRNases into two distinct subfamilies with possible role in transcriptional and translational events during stress.
    Nucleic Acids Research 05/2014; 42(12). DOI:10.1093/nar/gku425 · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The major sessility-motility life style change and additional fundamental aspects of bacterial physiology, behavior and morphology are regulated by the secondary messenger cyclic di-GMP (c-di-GMP). Although the c-di-GMP metabolizing enzymes and many receptors have been readily characterized upon discovery, the HD-GYP domain c-di-GMP phosphodiesterase family remained underinvestigated. In this issue of Molecular Microbiology, Bellini et al., (2013) provide an important step towards functional and structural characterization of the previously neglected HD-GYP domain family by resolving the crystal structure of PmGH, a catalytically active family member from the thermophilic bacterium Persephonella marina. The crystal structure revealed a novel tri-nuclear catalytic iron center involved in c-di-GMP binding and catalysis and provides the structural basis to subsequently characterize in detail the catalytic mechanism of hydrolysis of c-di-GMP to GMP by HD-GYP domains.
    Molecular Microbiology 11/2013; DOI:10.1111/mmi.12463 · 5.03 Impact Factor

Preview (3 Sources)

Available from