Time-Course and Regional Analyses of the Physiopathological Changes Induced after Cerebral Injection of an Amyloid β Fragment in Rats

Molecular Mechanisms in Neurodegenerative Dementia Laboratory, Inserm U710, Montpellier, France.
American Journal Of Pathology (Impact Factor: 4.6). 07/2011; 179(1):315-34. DOI: 10.1016/j.ajpath.2011.03.021
Source: PubMed

ABSTRACT Alzheimer's disease (AD) is a neurodegenerative pathology characterized by the presence of senile plaques and neurofibrillary tangles, accompanied by synaptic and neuronal loss. The major component of senile plaques is an amyloid β protein (Aβ) formed by pathological processing of the Aβ precursor protein. We assessed the time-course and regional effects of a single intracerebroventricular injection of aggregated Aβ fragment 25-35 (Aβ(25-35)) in rats. Using a combined biochemical, behavioral, and morphological approach, we analyzed the peptide effects after 1, 2, and 3 weeks in the hippocampus, cortex, amygdala, and hypothalamus. The scrambled Aβ(25-35) peptide was used as negative control. The aggregated forms of Aβ peptides were first characterized using electron microscopy, infrared spectroscopy, and Congo Red staining. Intracerebroventricular injection of Aβ(25-35) decreased body weight, induced short- and long-term memory impairments, increased endocrine stress, cerebral oxidative and cellular stress, neuroinflammation, and neuroprotective reactions, and modified endogenous amyloid processing, with specific time-course and regional responses. Moreover, Aβ(25-35), the presence of which was shown in the different brain structures and over 3 weeks, provoked a rapid glial activation, acetylcholine homeostasis perturbation, and hippocampal morphological alterations. In conclusion, the acute intracerebroventricular Aβ(25-35) injection induced substantial central modifications in rats, highly reminiscent of the human physiopathology, that could contribute to physiological and cognitive deficits observed in AD.

  • Source
    • "In addition, Aí µí»½ induced elevation of reactive oxygen species (ROS) levels in neurons resulting in protein oxidation, lipid peroxidation, ROS formation, and cellular dysfunction, leading to calcium ion accumulation and subsequent neuronal death [8] [9] [10]. Furthermore, Aí µí»½ causes damage to mitochondrial membranes and hence increases the amount of intracellular H 2 O 2 , thus affecting the genes downstream by interacting with numerous receptors and damaging neurons, ultimately accelerating cell death and hippocampus alteration [11] [12] [13]. The hippocampus is a relevant structure that is highly involved in cognition and psychological function and there is evidence that this structure is rapidly and extremely affected by an injection of the Aí µí»½ fragment (Aí µí»½25–35) in rat [14]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is a neurodegenerative disorder and most common form of dementia that leads to memory impairment. In the present study we have examined the protective effects of Borago officinalis (borage) extract on Amyloid β (A β )-Induced memory impairment. Wistar male rats received intrahippocampal (IHP) injection of the A β (25-35) and borage extract throughout gestation (100 mg/kg). Learning and memory functions in the rats were examined by the passive avoidance and the Morris water maze (MWM) tasks. Finally, the antioxidant capacity of hippocampus was measured using ferric ion reducing antioxidant power (FRAP) assay. The results showed that A β (25-35) impaired step-through latency and time in dark compartment in passive avoidance task. In the MWM, A β (25-35) significantly increased escape latency and traveled distance. Borage administration attenuated the A β -induced memory impairment in both the passive avoidance and the MWM tasks. A β induced a remarkable decrease in antioxidant power (FRAP value) of hippocampus and borage prevented the decrease of the hippocampal antioxidant status. This data suggests that borage could improve the learning impairment and oxidative damage in the hippocampal tissue following A β treatment and that borage consumption may lead to an improvement of AD-induced cognitive dysfunction.
    BioMed Research International 06/2014; 2014:798535. DOI:10.1155/2014/798535 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) remodel the pericellular environment by regulating the cleavage of extracellular matrix proteins, cell surface components, neurotransmitter receptors, and growth factors that mediate cell adhesion, synaptogenesis, synaptic plasticity, and long-term potentiation. Interestingly, increased MMP activity and dysregulation of the balance between MMPs and TIMPs have also been implicated in various pathologic conditions. In this paper, we discuss various animal models that suggest that the activation of the gelatinases MMP-2 and MMP-9 is involved in pathogenesis of drug dependence, Alzheimer's disease, and epilepsy.
    12/2011; 2011(2090-2247):681385. DOI:10.1155/2011/681385
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our previous studies demonstrate that a non-cholinesterase inhibitor (AChEI) compound catalpol, purified from a traditional Chinese medicinal herb Rehmannia glutinosa, could improve the symptoms and pathological changes in animal and cellular models of memory related neurodegenerative diseases. In this study, we compared catalpol with the most commonly used AChEI donepezil in respect to their mechanism of action on the neurodegenerative changes in an animal model induced by beta-amyloid (Aβ) plus glutamate receptor agonist. It was found that the model mice showed significant deficit in the learning ability and memory in Y maze avoidance test, and meanwhile both donepezil and catalpol greatly improve the learning ability and memory after 2 to 3 months' administration. At the selected doses, donepezil only partially raised the declined brain muscarinic acetylcholine receptor (M receptor) density and choline acetyltransferase (ChAT) activity resulting in these levels still lower than normal control, while catalpol completely retrieved these two parameters. ELISA revealed that catalpol, instead of donepezil, possessed the capability of elevating the declined brain BDNF level of the animal model. The ELISA results on the BDNF protein level was confirmed by quantitative RT-PCR measurement of BDNF mRNA in Aβ₂₅₋₃₅-treated primary culture of forebrain neurons. In combination with our previous work, we think the neuroprotective effects of donepezil and catalpol are mediated through different mechanisms. Since BDNF has been proved to be an important intrinsic factor in protecting neurodegenerative diseases, catalpol may be a hopefully effective compound against neurodegenerative changes induced by Aβ and glutamate receptor agonist.
    Brain research 03/2012; 1441:27-37. DOI:10.1016/j.brainres.2012.01.008 · 2.83 Impact Factor
Show more

Questions & Answers about this publication

  • Florian Duclot added an answer in Transgenic Rats:
    What are the best non-transgenic Alzheimer's disease rat models?

    I'm trying to study about non-transgenic rat models in alzheimer's disease and the information about non-transgenic rat model is less than transgenic rat model. 

    Florian Duclot · Florida State University

    If you're looking at a non-transgenic rat model of AD, have a look at the following publication (see end of message). As someone previously explained, modeling all aspects of the human pathology is complex and difficult, but this model incudes a wide range of AD-like symptoms (behavioral and molecular). Have a look at other publications from this group for more information.

    Hope this helps.