Article

Lymph node-derived donor encephalitogenic CD4+ T cells in C57BL/6 mice adoptive transfer experimental autoimmune encephalomyelitis highly express GM-CSF and T-bet

Department of Neurology, University of Texas Southwestern Medical Center at Dallas, TX, USA.
Journal of Neuroinflammation (Impact Factor: 4.9). 06/2011; 8:73. DOI: 10.1186/1742-2094-8-73
Source: PubMed

ABSTRACT Experimental autoimmune encephalomyelitis (EAE) is a relevant animal model for the human demyelinating inflammatory disorder of the central nervous system (CNS), multiple sclerosis (MS). Induction of EAE by adoptive transfer allows studying the role of the donor T lymphocyte in disease pathogenesis. It has been challenging to reliably induce adoptive transfer EAE in C57BL/6 (H-2b) mice. The goal of this study was to develop a reproducible and high yield protocol for adoptive transfer EAE in C57BL/6 mice. A step-wise experimental approach permitted us to develop a protocol that resulted in a consistent relatively high disease incidence of ~70% in recipient mice. Donor mice were immunized with myelin oligodendrocyte glycoprotein (MOG)p35-55 in complete Freund's adjuvant (CFA) followed by pertussis toxin (PT). Only lymph node cells (LNC) isolated at day 12 post immunization, and restimulated in vitro for 72 hours with 10 μg/mL of MOGp35-55 and 0.5 ng/mL of interleukin-12 (IL-12) were able to transfer disease. The ability of LNC to transfer disease was associated with the presence of inflammatory infiltrates in the CNS at day 12. Interferon gamma (IFNγ) was produced at comparable levels in cell cultures prepared from mice at both day 6 and day 12 post immunization. By contrast, there was a trend towards a negative association between IL-17 and disease susceptibility in our EAE model. The amount of GM-CSF secreted was significantly increased in the culture supernatants from cells collected at day 12 post immunization versus those collected at day 6 post-immunization. Activated CD4+ T cells present in the day 12 LNC cultures maintained expression of the transcription factor T-bet, which has been shown to regulate the expression of the IL-23 receptor. Also, there was an increased prevalence of MOGp35-55-specific CD4+ T cells in day 12 LNC after in vitro re-stimulation. In summary, encephalitogenic LNC that adoptively transfer EAE in C57BL/6 mice were not characterized by a single biomarker in our study, but by a composite of inflammatory markers. Our data further suggest that GM-CSF expression by CD4+ T cells regulated by IL-23 contributes to their encephalitogenicity in our EAE model.

Download full-text

Full-text

Available from: Scott S Zamvil, Jul 09, 2015
0 Followers
 · 
127 Views
  • Source
    • "Brains were pressed through a 70-μm nylon mesh cell strainer. Brain cells from all mice in each experimental group were pooled and processed as previously described (Cravens et al., 2011, 2013). In brief, brain cells were washed twice in 37% Percoll and CNS mononuclear cells were isolated by centrifugation at 2118 ×g for 15 min at 22 °C over a 30/70% Percoll gradient. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Immune surveillance of the CNS is critical for preventing infections, however there is no accepted experimental model to assess the risk of infection when utilizing disease-modifying agents. We tested two approved agents for patients with multiple sclerosis (MS), glatiramer acetate and fingolimod, in an experimental model of CNS immune surveillance. C57BL/6 mice were infected with the ME49 strain of the neuroinvasive parasite Toxoplasma gondii (T. gondii) and then treated with GA and fingolimod. Neither treatment affected host survival, however differences were observed in parasite load and in leukocyte numbers in the brains of infected animals. Here we demonstrate that this model could be a useful tool for analyzing immune surveillance.
    Journal of Neuroimmunology 09/2014; DOI:10.1016/j.jneuroim.2014.08.624 · 2.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Experimental autoimmune encephalomyelitis (EAE) is the most relevant animal model to study demyelinating diseases such as multiple sclerosis. EAE can be induced by active (active EAE) or passive (at-EAE) transfer of activated T cells in several species and strains of rodents. However, histological features of at-EAE model in C57BL/6 are poorly described. The aim of this study was to characterize the neuroinflammatory and neurodegenerative responses of at-EAE in C57BL/6 mice by histological techniques and compare them with that observed in the active EAE model. To develop the at-EAE, splenocytes from active EAE female mice were harvested and cultured in presence of MOG(35-55) and IL-12, and then injected intraperitoneally in recipient female C57BL6/J mice. In both models, the development of EAE was similar except for starting before the onset of symptoms and presenting a higher EAE cumulative score in the at-EAE model. Spinal cord histological examination revealed an increased glial activation as well as more extensive demyelinating areas in the at-EAE than in the active EAE model. Although inflammatory infiltrates composed by macrophages and T lymphocytes were found in the spinal cord and brain of both models, B lymphocytes were significantly increased in the at-EAE model. The co-localization of these B cells with IgG and their predominant distribution in areas of demyelination would suggest that IgG-secreting B cells are involved in the neurodegenerative processes associated with at-EAE.
    PLoS ONE 12/2012; 7(12):e52361. DOI:10.1371/journal.pone.0052361 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis (MS) is thought to be a CD4+ T cell mediated autoimmune demyelinating disease of the central nervous system (CNS) that is rarely diagnosed during infancy. Cellular and molecular mechanisms that confer disease resistance in this age group are unknown. We tested the hypothesis that a differential composition of immune cells within the CNS modulates age-associated susceptibility to CNS autoimmune disease. C57BL/6 mice younger than eight weeks were resistant to experimental autoimmune encephalomyelitis (EAE) following active immunization with myelin oligodendrocyte glycoprotein (MOG) peptide (p) 35--55. Neonates also developed milder EAE after transfer of adult encephalitogenic T cells primed by adult or neonate antigen presenting cells (APC). There was a significant increase in CD45+ hematopoietic immune cells and CD45+ high side scatter granulocytes in the CNS of adults, but not in neonates. Within the CD45+ immune cell compartment of adults, the accumulation of CD4+ T cells, Gr-1+ and Gr-1- monocytes and CD11c+ dendritic cells (DC) was identified. A significantly greater percentage of CD19+ B cells in the adult CNS expressed MHC II than neonate CNS B cells. Only in the adult CNS could IFNgamma transcripts be detected 10 days post immunization for EAE. IFNgamma is highly expressed by adult donor CD4+ T cells that are adoptively transferred but not by transferred neonate donor cells. In contrast, IL-17 transcripts could not be detected in adult or neonate CNS in this EAE model, and neither adult nor neonate donor CD4+ T cells expressed IL-17 at the time of adoptive transfer.
    Journal of Neuroinflammation 05/2013; 10(1):67. DOI:10.1186/1742-2094-10-67 · 4.90 Impact Factor