Anti-angiogenic effects of betulinic acid administered in nanoemulsion formulation using chorioallantoic membrane assay.

Toxicology Department, University of Medicine and Pharmacy Victor Babes Timisoara, Eftimie Murgu Square, No. 2, Timisoara, 300041, Romania.
Journal of Biomedical Nanotechnology (Impact Factor: 7.58). 04/2011; 7(2):317-24. DOI: 10.1166/jbn.2011.1297
Source: PubMed

ABSTRACT Betulinic acid (3beta, hydroxy-lup-20(29)-en-28-oic acid, BA), a pentacyclic triterpenoid, is derived from a widely distributed natural anticancer compound betulin. It has selective anticancer activity against several tumor cells, and recently it was shown that it also possess anti-angiogenic effects. The objective of this study was to formulate betulinic acid, a poorly aqueous-soluble compound, in flax-seed oil containing nanoemulsion formulation for enhanced delivery efficiency and to effectively inhibit the tumor angiogenic process. The nanoemulsion was prepared using high pressure homogenization method with a Microfludizer processor. The betulinic acid nanoemulsion was studied for the effect on the angiogenic process by performing the in vivo chick embryo chorioallantoic membrane (CAM) assay. The sample volume of 1 microl and 5 microl of the blank and BA nanoemulsions were applied directly on the CAM. The preliminary results from macroscopic, morphological and immunohistochemical evaluations have shown that morphological change was produced in the CAM mesenchyme with a negative impact on the normal growth of the capillaries. Betulinic acid does possess anti-angiogenic activity in a dose dependent manner, and the nanoemulsion formulation maintained this effect.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Betulinic acid (BA), a novel natural product with antimelanoma activity, has poor aqueous solubility (<0.1 μg/mL) and therefore exhibits poor bioavailability. The purpose of this study was to explore the feasibility of preparing BA solid dispersions (BA-SDs) with hydrophilic polymers to enhance the aqueous solubility of BA. Melt-quenched solid dispersions (MQ-SDs) of BA were prepared at various ratios with the hydrophilic polymers including Soluplus, HPMCAS-HF, Kollidon VA64, Kollidon K90, and Eudragit RLPO. BA was found to be miscible in all polymers at a 1:4 (w/w) ratio by modulated differential scanning calorimetry (MDSC). BA/Soluplus MQ-SD exhibited the highest solubility in simulated body fluids followed by BA/Kollidon VA64 MQ-SD. The MQ-SDs of BA/Soluplus, BA/HPMCAS-HF, and BA/Kollidon VA64 were found to be amorphous as indicated by X-ray powder diffraction (XRPD) studies. Fourier transform infra-red (FT-IR) studies indicated molecular interactions between BA and Soluplus. Our preliminary screening of polymers indicates that Soluplus and Kollidon VA64 exhibit the greatest potential to form BA-SDs.
    AAPS PharmSciTech 10/2014; DOI:10.1208/s12249-014-0220-x · 1.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Among the array of nanomaterials, carbon nanotubes have shown great potential as drug carriers in the field of nanomedicine, owing to their attractive physicochemical structure, which facilitates functionalization of therapeutic molecules onto their external walls or being encapsulated inside the tubes. The aim of this preliminary study was to formulate betulinic acid (BA), a poorly water-soluble drug, in oxidized multiwalled carbon nanotubes (MWCNT-COOH) for enhanced delivery efficiency into cancer cells with reduced cytotoxicity. The synthesized MWCNT-BA nanocomposite was characterized using ultraviolet-visible, Fourier transform infrared, thermogravimetric analysis, powder X-ray diffraction, and field emission scanning electron microscopy techniques. The loading of BA in MWCNT-COOH nanocarrier was estimated to be about 14.5%-14.8% (w/w), as determined by ultraviolet-visible and thermogravimetric analysis. Fourier transform infrared study shows that the peaks of the resulting MWCNT-BA nanocomposite correlate to the characteristic functional groups of BA and MWCNT-COOH. The powder X-ray diffraction results confirmed that the tubular structures of MWCNT-COOH were not affected by the drug loading mechanism of BA. The release profiles demonstrated that approximately 98% of BA could be released within 22 hours by phosphate-buffered saline solution at pH 7.4 compared with about 22% within 24 hours at pH 4.8. The biocompatibility studies revealed that MWCNT-BA at concentrations <50μg/mL expressed no cytotoxicity effects for mouse embryo fibroblast cells after 72 hours of treatment. The anticancer activity of MWCNT-BA was observed to be more sensitive to human lung cancer cell line when compared with human liver cancer cell line, with half maximal inhibitory concentration values of 2.7 and 11.0μg/mL, respectively. Our findings form a fundamental platform for further investigation of the MWCNT-BA formulation against different types of cancer cells.
    Drug Design, Development and Therapy 01/2014; 8:2333-43. DOI:10.2147/DDDT.S70650 · 3.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Betulinic acid (BA), a pentacyclic triterpene, represents a new therapeutic substance that has potential benefits for treating glioblastoma. Recently, new strategies for producing BA derivatives with improved properties have evolved. However, few studies have examined the combination of BA or BA derivatives using radiotherapy. The effects of two BA derivatives, NVX-207 and B10, on cellular and radiobiological behavior were analyzed using glioblastoma cell lines (U251MG, U343MG and LN229). Based on IC50 values under normoxic conditions, we detected a 1.3-2.9-fold higher cytotoxicity of the BA derivatives B10 and NVX-207, respectively, compared to BA. Incubation using both BA derivatives led to decreased cell migration, cleavage of PARP and decreased protein expression levels of Survivin. Weak radiation sensitivity enhancement was observed in U251MG cells after treatment with both BA derivatives. The enhancement factors at an irradiation dose of 6 Gy after treatment with 5 µM NVX-207 and 5 µM B10 were 1.32 (p = 0.029) and 1.55 (p = 0.002), respectively. In contrast to BA, neither NVX-207 nor B10 had additional effects under hypoxic conditions. Our results suggest that the BA derivatives NVX-207 and B10 improve the effects of radiotherapy on human malignant glioma cells, particularly under normoxic conditions.
    International Journal of Molecular Sciences 11/2014; 15(11):19777-19790. DOI:10.3390/ijms151119777 · 2.34 Impact Factor


Available from
May 28, 2014