Article

A Genome-Wide Association Study of BMI in American Indians

Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA.
Obesity (Impact Factor: 4.39). 06/2011; 19(10):2102-6. DOI: 10.1038/oby.2011.178
Source: PubMed

ABSTRACT Numerous studies have been done to understand genetic contributors to BMI, but only a limited number of studies have been done in nonwhite groups such as American Indians. A genome-wide association study (GWAS) for BMI was therefore performed in Pima Indians. BMI measurements from a longitudinal study of 1,120 Pima Indians and 454,194 single-nucleotide polymorphisms (SNPs) from the 1 million Affymetrix SNP panel were used (35% of SNPs were excluded due to minor allele frequency <0.05). Data included BMI measured at multiple examinations collected from 1965 to 2004, as well as the maximum BMI at one of these visits. General and within-family tests were performed using a maximum-likelihood based mixed model procedure. No SNP reached a genome-wide significance level (estimated at P < 4.94 × 10(-7)). For repeated measures analyses, the strongest associations for general and within-family tests mapped to two different regions on chromosome 6 (rs9342220 (P = 1.39 × 10(-6)) and rs7758764 (P = 2.51 × 10(-6)), respectively). For maximum BMI, the strongest association for the general tests mapped to chromosome 4 (rs17612333; P = 1.98 × 10(-6)) and to chromosome 3 (rs11127958; P = 1.53 × 10(-6)) for the within-family tests. Further analysis is important because only a few of these regions have been previously implicated in a GWAS and genetic susceptibility may differ by ethnicity.

0 Followers
 · 
113 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic variation in SIRT1 affects obesity-related phenotypes in several populations. The purpose of this study was to determine whether variation in SIRT1 affects susceptibility to obesity or type 2 diabetes in Pima Indians, a population with very high prevalence and incidence rates of these diseases. Genotypic data from single nucleotide polymorphisms (SNPs) identified by sequencing regions of SIRT1 combined with SNPs in/near SIRT1 from a prior genome-wide association study determined that 4 tag SNPs (rs7895833, rs10509291, rs7896005, and rs4746720) could capture information across this gene and its adjacent 5' region. The tag SNPs were genotyped in a population-based sample of 3501 Pima Indians (44% had diabetes, 58% female) for association with type 2 diabetes and BMI. Metabolic trait data and adipose biopsies were available on a subset of these subjects. Two tag SNPs, rs10509291 and rs7896005, were nominally associated with type 2 diabetes (P=0.01, OR=1.25 95%CI 1.05-1.48, and P=0.02, OR=1.17 95%CI 1.02-1.34, respectively; additive P values adjusted for age, sex, birth year, and family membership), but not BMI (adjusted P values 0.52 and 0.45, respectively). Among metabolically characterized subjects with normal glucose tolerance (N=243), those carrying the diabetes risk allele (T) for rs10509291 and (G) for rs7896005 had a reduced acute insulin response (AIR) to an intravenous glucose bolus (adjusted P=0.045 and 0.035, respectively). SIRT1 expression in adipose biopsies was negatively correlated with BMI (adjusted P=0.00001). We conclude that variation in SIRT1 is nominally associated with reduced AIR and increased risk for type 2 diabetes. SIRT1 expression in adipose is correlated with BMI, but it remains unknown whether this is a cause or consequence of obesity.
    Molecular Genetics and Metabolism 08/2011; 104(4):661-5. DOI:10.1016/j.ymgme.2011.08.001 · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Type 2 diabetes (2DM), obesity, and coronary artery disease (CAD) are frequently coexisted being as key components of metabolic syndrome. Whether there is shared genetic background underlying these diseases remained unclear. We performed a meta-analysis of 35 genome screens for 2DM, 36 for obesity or body mass index (BMI)-defined obesity, and 21 for CAD using genome search meta-analysis (GSMA), which combines linkage results to identify regions with only weak evidence and provide genetic interactions among different diseases. For each study, 120 genomic bins of approximately 30 cM were defined and ranked according to the best linkage evidence within each bin. For each disease, bin 6.2 achieved genomic significanct evidence, and bin 9.3, 10.5, 16.3 reached suggestive level for 2DM. Bin 11.2 and 16.3, and bin 10.5 and 9.3, reached suggestive evidence for obesity and CAD respectively. In pooled all three diseases, bin 9.3 and 6.5 reached genomic significant and suggestive evidence respectively, being relatively much weaker for 2DM/CAD or 2DM/obesity or CAD/obesity. Further, genomewide significant evidence was observed of bin 16.3 and 4.5 for 2DM/obesity, which is decreased when CAD was added. These findings indicated that bin 9.3 and 6.5 are most likely to be shared by 2DM, obesity and CAD. And bin 16.3 and 4.5 are potentially common regions to 2DM and obesity only. The observed shared susceptibility regions imply a partly overlapping genetic aspects of disease development. Fine scanning of these regions will definitely identify more susceptibility genes and causal variants.
    Cardiovascular Diabetology 06/2012; 11:68. DOI:10.1186/1475-2840-11-68 · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies (GWASs) have been used to search for susceptibility genes for type 2 diabetes and obesity in the Pima Indians, a population with a high prevalence of both diseases. In these studies, a variant (rs2025804) in the LEPR gene was nominally associated with BMI in 1,082 subjects (P = 0.03 adjusted for age, sex, birth year, and family membership). Therefore the LEPR and leptin overlapping transcript (LEPROT) genes were selected for further sequencing and genotyping in larger population-based samples for association analyses with obesity-related phenotypes. Selected variants (n = 80) spanning these genes were genotyped in a sample of full-heritage Pima Indians (n = 2,842) and several common variants including rs2025804 were nominally associated with BMI (P = 0.05-0.003 adjusted for age, sex, birth year, and family membership). Four common tag variants associated with BMI in the full-heritage Pima Indian sample were genotyped in a second sample of mixed-heritage Native Americans (n = 2,969) and three of the variants showed nominal replication (P = 0.03-0.006 adjusted as above and additionally for Indian heritage). Combining both samples provided the strongest evidence for association (adjusted P = 0.0003-0.0001). A subset of these individuals (n = 403) had been metabolically characterized for predictors of obesity and the BMI risk alleles for the variants tagged by rs2025804 were also associated with lower 24-h energy expenditure (24hEE) as assessed in a human respiratory chamber (P = 0.0007 adjusted for age, sex, fat mass, fat-free mass, activity, and family membership). We conclude that common noncoding variation in the LEPR gene is associated with higher BMI and lower energy expenditure in Native Americans.
    Obesity 06/2012; 20(12). DOI:10.1038/oby.2012.159 · 4.39 Impact Factor
Show more

Preview

Download
0 Downloads