Article

TDP-43 and FUS: a nuclear affair

Adolf-Butenandt-Institute, Biochemistry, Ludwig-Maximilians-University and German Center for Neurodegenerative Diseases (DZNE) Munich, Schillerstr. 44, 80336 Munich, Germany.
Trends in Neurosciences (Impact Factor: 12.9). 06/2011; 34(7). DOI: 10.1016/j.tins.2011.05.002
Source: PubMed

ABSTRACT Misfolded TAR DNA binding protein 43 (TDP-43) and Fused-In-Sarcoma (FUS) protein have recently been identified as pathological hallmarks of the neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) characterized by the presence of ubiquitin-positive inclusions (FTLD-U). Although TDP-43 and FUS are normally located predominantly in the nucleus, pathological TDP-43 and FUS inclusions are mostly found in the cytosol. Cytosolic deposition is paralleled by a striking nuclear depletion of either protein. Based on a number of recent findings, we postulate that defects in nuclear import are an important step towards TDP-43 and FUS dysfunction. Failure of nuclear transport can arise from mutations within a nuclear localization signal or from age-related decline of nuclear import mechanisms. We propose that nuclear import defects in combination with additional hits, for example cellular stress and genetic risk factors, may be a central underlying cause of ALS and FTLD-U pathology.

Full-text

Available from: Dorothee Dormann, Sep 08, 2014
1 Follower
 · 
108 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Therapeutic options for patients with amyotrophic lateral sclerosis (ALS) are currently limited. However, recent studies show that almost all cases of ALS, as well as tau-negative frontotemporal dementia (FTD), share a common neuropathology characterized by the deposition of TAR-DNA binding protein (TDP)-43-positive protein inclusions, offering an attractive target for the design and testing of novel therapeutics. Here we demonstrate how diverse environmental stressors linked to stress granule formation, as well as mutations in genes encoding RNA processing proteins and protein degradation adaptors, initiate ALS pathogenesis via TDP-43. We review the progressive development of TDP-43 proteinopathy from cytoplasmic mislocalization and misfolding through to macroaggregation and the addition of phosphate and ubiquitin moieties. Drawing from cellular and animal studies, we explore the feasibility of therapeutics that act at each point in pathogenesis, from mitigating genetic risk using antisense oligonucleotides to modulating TDP-43 proteinopathy itself using small molecule activators of autophagy, the ubiquitin-proteasome system, or the chaperone network. We present the case that preventing the misfolding of TDP-43 and/or enhancing its clearance represents the most important target for effectively treating ALS and frontotemporal dementia.
    Neurotherapeutics 02/2015; 12(2). DOI:10.1007/s13311-015-0338-x · 3.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Loss of function mutations in granulin (GRN) are linked to two distinct neurological disorders, frontotemporal lobar degeneration (FTLD) and neuronal ceroid lipofuscinosis (NCL). It is so far unknown how a complete loss of GRN in NCL and partial loss of GRN in FTLD can result in such distinct diseases. In zebrafish, there are two GRN homologues, Granulin A (Grna) and Granulin B (Grnb). We have generated stable Grna and Grnb loss of function zebrafish mutants by zinc finger nuclease mediated genome editing. Surprisingly, the grna and grnb single and double mutants display neither spinal motor neuron axonopathies nor a reduced number of myogenic progenitor cells as previously reported for Grna and Grnb knock down embryos. Additionally, grna-/-;grnb-/- double mutants have no obvious FTLD- and NCL-related biochemical and neuropathological phenotypes. Taken together, the Grna and Grnb single and double knock out zebrafish lack any obvious morphological, pathological and biochemical phenotypes. Loss of zebrafish Grna and Grnb might therefore either be fully compensated or only become symptomatic upon additional challenge.
    PLoS ONE 03/2015; 10(3):e0118956. DOI:10.1371/journal.pone.0118956 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Axonal damage has been associated with aberrant protein trafficking. We examined a newly characterized class of compounds that target nucleo-cytoplasmic shuttling by binding to the catalytic groove of the nuclear export protein XPO1 (also known as CRM1, chromosome region maintenance protein 1). Oral administration of reversible CRM1 inhibitors in preclinical murine models of demyelination significantly attenuated disease progression, even when started after the onset of paralysis. Clinical efficacy was associated with decreased proliferation of immune cells, characterized by nuclear accumulation of cell cycle inhibitors, and preservation of cytoskeletal integrity even in demyelinated axons. Neuroprotection was not limited to models of demyelination, but was also observed in another mouse model of axonal damage (that is, kainic acid injection) and detected in cultured neurons after knockdown of Xpo1, the gene encoding CRM1. A proteomic screen for target molecules revealed that CRM1 inhibitors in neurons prevented nuclear export of molecules associated with axonal damage while retaining transcription factors modulating neuroprotection.
    Nature Neuroscience 02/2015; DOI:10.1038/nn.3953 · 14.98 Impact Factor