Neuroregeneration in neurodegenerative disorders.

Department of Cellular and Molecular Medicine, School of Medicine, 'Carol Davila' University of Medicine and Pharmacy, Bucharest 050474, Romania.
BMC Neurology (Impact Factor: 2.49). 06/2011; 11:75. DOI: 10.1186/1471-2377-11-75
Source: PubMed

ABSTRACT Neuroregeneration is a relatively recent concept that includes neurogenesis, neuroplasticity, and neurorestoration--implantation of viable cells as a therapeutical approach.
Neurogenesis and neuroplasticity are impaired in brains of patients suffering from Alzheimer's Disease or Parkinson's Disease and correlate with low endogenous protection, as a result of a diminished growth factors expression. However, we hypothesize that the brain possesses, at least in early and medium stages of disease, a "neuroregenerative reserve", that could be exploited by growth factors or stem cells-neurorestoration therapies.
In this paper we review the current data regarding all three aspects of neuroregeneration in Alzheimer's Disease and Parkinson's Disease.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is a progressive and neurodegenerative disorder that induces dementia in older people. It was first reported in 1907 by Alois Alzheimer, who characterized the disease as causing memory loss and cognitive impairment. Pathologic characteristics of AD are β-amyloid plaques, neurofibrillary tangles and neurodegeneration. Current therapies only target the relief of symptoms using various drugs, and do not cure the disease. Recently, stem cell therapy has been shown to be a potential approach to various diseases, including neurodegenerative disorders, and in this review, we focus on stem cell therapies for AD.
    International Journal of Molecular Sciences 10/2014; 15(10):19226-19238. · 2.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The C-terminal domain of the heavy chain of tetanus toxin (Hc-TeTx) is a peptide that has a neuroprotective action against dopaminergic damage by MPP(+), both in vitro and in vivo. The trophic effects of Hc-TeTx have been related to its ability to activate the pathways of the tropomyosin receptor kinase, which are crucial for survival process. Our group had previously shown neuroprotective effect of intramuscular Hc-TeTx treatment on animals with a dopaminergic lesion; however, there is no evidence indicating its restorative effects on advanced dopaminergic neurodegeneration. The aim of our study was to examine the restorative effects of an intramuscular injection of the Hc-TeTx fragment on the nigrostriatal system of hemiparkinsonian rats. The animals were administered with a vehicle or Hc-TeTx (20μg/kg) in the gastrocnemius muscle for three consecutive days post-dopaminergic lesion, which was made using 6-hydroxydopamine. Post-Hc-TeTx treatment, the hemiparkinsonian rats showed constant motor asymmetry. Moreover, the ipsilateral striatum of the post-Hc-TeTx group had a lower number of argyrophilic structures and a major immunorreactivity to Tyrosine Hydroxylase in the striatum and the Substantia Nigra pars compacta compared to the 6-OHDA group. Our results show the restorative effect of the Hc-TeTx fragment during the dopaminergic neurodegeneration caused by 6-OHDA.
    Neuroscience Research 05/2014; · 2.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: One of the common effects of lithium (Li) and valproic acid (VPA) is their ability to protect against excitotoxic insults. Neurodegenerative and neuropsychiatric diseases may be also associated with altered trophic support of brain-derived neurotrophic factor (BDNF), the most widely distributed neurotrophin in the central nervous system. However, despite these evidences, the effect of Li-VPA combination on BDNF after excitoxic insult has been inadequately investigated. We address this issue by exposing a human neuroblastoma cell line (SH-SY5Y) to neurotoxic concentration of L-glutamate and exploring whether the neuroprotective action of Li-VPA on these cells is associated with changes in BDNF protein and mRNA levels. The results showed that pre-incubation of Li-VPA abolished the toxic effect of glutamate on SH-SY5Y cell survival and this neuroprotective effect was associated with increased synthesis and mRNA expression of BDNF after 24 and 48 h of incubation. In conclusion, this study demonstrates that the neuroprotective effects of Li-VPA against glutamate-induced neurotoxicity in SH-SY5Y neuroblastoma cells is associated with increased synthesis and mRNA expression of BDNF. These data further support the idea that these two drugs can be used for prevention and/or treatment of glutamate-related neurodegenerative disorders.
    Journal of Psychopharmacology 04/2014; · 2.81 Impact Factor

Full-text (3 Sources)

Available from
Jul 24, 2014