Predicting drug-induced hepatotoxicity using QSAR and toxicogenomics approaches.

Laboratory for Molecular Modeling, University of North Carolina , Chapel Hill, North Carolina 27599, United States.
Chemical Research in Toxicology (Impact Factor: 4.19). 06/2011; 24(8):1251-62. DOI: 10.1021/tx200148a
Source: PubMed

ABSTRACT Quantitative structure-activity relationship (QSAR) modeling and toxicogenomics are typically used independently as predictive tools in toxicology. In this study, we evaluated the power of several statistical models for predicting drug hepatotoxicity in rats using different descriptors of drug molecules, namely, their chemical descriptors and toxicogenomics profiles. The records were taken from the Toxicogenomics Project rat liver microarray database containing information on 127 drugs ( ). The model end point was hepatotoxicity in the rat following 28 days of continuous exposure, established by liver histopathology and serum chemistry. First, we developed multiple conventional QSAR classification models using a comprehensive set of chemical descriptors and several classification methods (k nearest neighbor, support vector machines, random forests, and distance weighted discrimination). With chemical descriptors alone, external predictivity (correct classification rate, CCR) from 5-fold external cross-validation was 61%. Next, the same classification methods were employed to build models using only toxicogenomics data (24 h after a single exposure) treated as biological descriptors. The optimized models used only 85 selected toxicogenomics descriptors and had CCR as high as 76%. Finally, hybrid models combining both chemical descriptors and transcripts were developed; their CCRs were between 68 and 77%. Although the accuracy of hybrid models did not exceed that of the models based on toxicogenomics data alone, the use of both chemical and biological descriptors enriched the interpretation of the models. In addition to finding 85 transcripts that were predictive and highly relevant to the mechanisms of drug-induced liver injury, chemical structural alerts for hepatotoxicity were identified. These results suggest that concurrent exploration of the chemical features and acute treatment-induced changes in transcript levels will both enrich the mechanistic understanding of subchronic liver injury and afford models capable of accurate prediction of hepatotoxicity from chemical structure and short-term assay results.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: High Throughput Screening (HTS) assays that measure the in vitro toxicity of environmental compounds have been widely applied as an alternative to in vivo animal tests of chemical toxicity. Current HTS studies provide the community with rich toxicology information that has the potential to be integrated into toxicity research. The available in vitro toxicity data is updated daily in structured formats (e.g., deposited into PubChem and other data sharing web portals) or in unstructured way (papers, laboratory reports, toxicity website updates etc). The information derived from the current toxicity data is so large and complex that it becomes difficult to process using available database management tools or traditional data processing applications. For this reason, it is necessary to develop a "big data" approach when conducting modern chemical toxicity research. In vitro data for a compound, obtained from meaningful bioassays, can be viewed as a response profile that gives detailed information about the compound's ability to affect relevant biological proteins/receptors. This information is critical for the evaluation of complex bio-activities (e.g., animal toxicities) and grows rapidly as "big data" in toxicology communities. This review focuses mainly on the existing structured in vitro data (e.g., PubChem datasets) as response profiles for compounds of environmental interest (e.g., potential human/animal toxicants). Potential modeling and mining tools to use the current big data pool in chemical toxicity research are also described.
    Chemical Research in Toxicology 09/2014; · 4.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In practice, some drugs produce a number of negative biological effects that can mitigate their effectiveness as a remedy. To address this issue, several studies have been performed for the prediction of drug-induced toxicity from gene-expression data, and a significant amount of work has been done on predicting limited drug-induced symptoms or single-organ toxicity. Since drugs often lead to some injuries in several organs like liver or kidney, however, it would be very useful to forecast the drug-induced injuries for multiple organs. Therefore, in this work, our aim was to develop a multi-organ toxicity prediction model using an integrative model of gene-expression data. To train our integrative model, we used 3708 in-vivo samples of gene-expression profiles exposed to one of 41 drugs related to 21 distinct physiological changes divided between liver and kidney (liver 11, kidney 10). Specifically, we used the gene-expression profiles to learn an ensemble classifier for each of 21 pathology prediction models. Subsequently, these classifiers were combined with weights to generate an integrative model for each pathological finding. The integrative model outputs the likeliness of presenting the trained pathology in a given test sample of gene-expression profile, called an integrative prediction score (IPS). For the evaluation of an integrative model, we estimated the prediction performance with the k-fold cross-validation. Our results demonstrate that the proposed integrative model is superior to individual pathology prediction models in predicting multi-organ drug-induced toxicities over all the targeted pathological findings. On average, the AUC of the integrative models was 88% while the AUC of individual pathology prediction models was 68%. Not only does this integrative model produce comparable prediction performance to existing approaches, but also it produces very stable performance overall. In addition, our approach is easily expandable to a variety of other multi-organ toxicology applications.
    BMC Bioinformatics 12/2014; 15(Suppl 16):S2. · 2.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: FutureTox II, a Society of Toxicology Contemporary Concepts in Toxicology workshop, was held in January, 2014. The meeting goals were to review and discuss the state of the science in toxicology in the context of implementing the NRC 21st century vision of predicting in vivo responses from in vitro and in silico data, and to define the goals for the future. Presentations and discussions were held on priority concerns such as predicting and modeling of metabolism, cell growth and differentiation, effects on sensitive subpopulations, and integrating data into risk assessment. Emerging trends in technologies such as stem cell-derived human cells, 3D organotypic culture models, mathematical modeling of cellular processes and morphogenesis, adverse outcome pathway development, and high-content imaging of in vivo systems were discussed. Although advances in moving towards an in vitro/in silico based risk assessment paradigm were apparent, knowledge gaps in these areas and limitations of technologies were identified. Specific recommendations were made for future directions and research needs in the areas of hepatotoxicity, cancer prediction, developmental toxicity, and regulatory toxicology. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail:
    Toxicological sciences : an official journal of the Society of Toxicology. 02/2015; 143(2):256-67.

Full-text (4 Sources)

Available from
Jun 5, 2014