Interaction of Poly(ethylenimine)-DNA Polyplexes with Mitochondria: Implications for a Mechanism of Cytotoxicity

Department of Chemistry & Macromolecules & Interfaces Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States.
Molecular Pharmaceutics (Impact Factor: 4.79). 06/2011; 8(5):1709-19. DOI: 10.1021/mp200078n
Source: PubMed

ABSTRACT Poly(ethylenimine) (PEI) and PEI-based systems have been widely studied for use as nucleic acid delivery vehicles. However, many of these vehicles display high cytotoxicity, rendering them unfit for therapeutic use. By exploring the mechanisms that cause cytotoxicity, and through understanding structure-function relationships between polymers and intracellular interactions, nucleic acid delivery vehicles with precise intracellular properties can be tailored for specific function. Previous research has shown that PEI is able to depolarize mitochondria, but the exact mechanism as to how depolarization is induced remains elusive and therefore is the focus of the current study. Potential mechanisms for mitochondrial depolarization include direct mitochondrial membrane permeabilization by PEI or PEI polyplexes, activation of the mitochondrial permeability transition pore, and interference with mitochondrial membrane proton pumps, specifically Complex I of the electron transport chain and F(0)F(1)-ATPase. Herein, confocal microscopy and live cell imaging showed that PEI polyplexes do colocalize to some degree with mitochondria early in transfection, and the degree of colocalization increases over time. Cyclosporin a was used to prevent activation of the mitochondrial membrane permeability transition pore, and it was found that early in transfection cyclosporin a was unable to prevent the loss of mitochondrial membrane potential. Further studies done using rotenone and oligomycin to inhibit Complex I of the electron transport chain and F(0)F(1)-ATPase, respectively, indicate that both of these mitochondrial proton pumps are functioning during PEI transfection. Overall, we conclude that direct interaction between polyplexes and mitochondria may be the reason why mitochondrial function is impaired during PEI transfection.

Download full-text


Available from: Giovanna Grandinetti, Apr 30, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we synthesized a water-soluble poly(amic acid-co-imide) (PA-I) from ethylenediaminetetraacetic dianhydride (EDTA) and 2,2'-(ethylenedioxy)bis(ethylamine) that possesses comparable transfection efficiency to that of polyethylenimine (PEI), when prepared in combination with divalent calcium cations. The polycondensation of monomers afforded poly(amic acid) (PA) precursors, and subsequent thermal imidization resulted in the formation of PA-I. At a polymer/DNA ratio (indicated by the molar ratio of nitrogen in the polymer to phosphate in DNA) of 40, complete retardation of the DNA band was observed by gel electrophoresis, indicating the strong association of DNA with PA-I. A zeta potential of -22 mV was recorded for the PA-I polymer solution, and no apparent cytotoxicity was observed at concentrations up to 500 μg·mL(-1). In the presence of divalent Ca(2+), the transfection efficiency of PA-I was higher than that of PA, due to the formation of a copolymer/Ca(2+)/DNA polyplex and the reduction in negative charge due to thermal cyclization. Interestingly, a synergistic effect of Ca(2+) and the synthesized copolymer on DNA transfection was observed. The use of Ca(2+) or copolymer alone resulted in unsatisfactory delivery, whereas the formation of three-component polyplexes synergistically increased DNA transfection. Our findings demonstrated that a PA-I/Ca(2+)/DNA polyplex could serve as a promising candidate for gene delivery.
    International Journal of Nanomedicine 02/2015; 10:1637-1647. DOI:10.2147/IJN.S76502 · 4.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RNA interference (RNAi) has been extensively employed for in vivo research since its use was first demonstrated in mammalian cells 10 years ago. Design rules have improved, and it is now routinely possible to obtain reagents that suppress expression of any gene desired. At the same time, increased understanding of the molecular basis of unwanted side effects has led to the development of chemical modification strategies that mitigate these concerns. Delivery remains the single greatest hurdle to widespread adoption of in vivo RNAi methods. However, exciting advances have been made and new delivery systems under development may help to overcome these barriers. This review discusses advances in RNAi biochemistry and biology that impact in vivo use and provides an overview of select publications that demonstrate interesting applications of these principles. Emphasis is placed on work with synthetic, small interfering RNAs (siRNAs) published since the first installment of this review which appeared in 2006.
    Molecular Therapy 12/2011; 20(3):483-512. DOI:10.1038/mt.2011.263 · 6.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The promise of cancer gene therapeutics is hampered by difficulties in the in vivo delivery to the targeted tumor cells, and systemic delivery remains to be the biggest challenge to be overcome. Here, we concentrate on systemic in vivo gene delivery for cancer therapy using nonviral vectors. In this review, we summarize the existing delivery barriers together with the requirements and strategies to overcome these problems. We will also introduce the current progress in the design of nonviral vectors, and briefly discuss their safety issues.
    Molecular Therapy 04/2012; 20(7):1298-304. DOI:10.1038/mt.2012.79 · 6.43 Impact Factor
Show more