Muscle-type 6-phosphofructo-1-kinase and aldolase associate conferring catalytic advantages for both enzymes.

Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Fármacos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
International Union of Biochemistry and Molecular Biology Life (Impact Factor: 2.79). 06/2011; 63(6):435-45. DOI: 10.1002/iub.464
Source: PubMed

ABSTRACT 6-Phosphofructo-1-kinase (PFK) and aldolase are two sequential glycolytic enzymes that associate forming heterotetramers containing a dimer of each enzyme. Although free PFK dimers present a negligible activity, once associated to aldolase these dimers are as active as the fully active tetrameric conformation of the enzyme. Here we show that aldolase-associated PFK dimers are not inhibited by clotrimazole, an antifungal azole derivative proposed as an antineoplastic drug due to its inhibitory effects on PFK. In the presence of aldolase, PFK is not modulated by its allosteric activators, ADP and fructose-2,6-bisphosphate, but is still inhibited by citrate and lactate. The association between the two enzymes also results on the twofold stimulation of aldolase maximal velocity and affinity for its substrate. These results suggest that the association between PFK and aldolase confers catalytic advantage for both enzymes and may contribute to the channeling of the glycolytic metabolism.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have demonstrated that glucose disposal is increased in the Fyn knockout (FynKO) mice due to increased insulin sensitivity. FynKO mice also display fasting hypoglycaemia despite decreased insulin levels, which suggested that hepatic glucose production was unable to compensate for the increased basal glucose utilization. The present study investigates the basis for the reduction in plasma glucose levels and the reduced ability for the liver to produce glucose in response to gluconeogenic substrates. FynKO mice had a 5-fold reduction in phosphoenolpyruvate carboxykinase (PEPCK) gene and protein expression and a marked reduction in pyruvate, pyruvate/lactate-stimulated glucose output. Remarkably, de novo glucose production was also blunted using gluconeogenic substrates that bypass the PEPCK step. Impaired conversion of glycerol to glucose was observed in both glycerol tolerance test and determination of the conversion of (13)C-glycerol to glucose in the fasted state. α-glycerol phosphate levels were reduced but glycerol kinase protein expression levels were not changed. Fructose-driven glucose production was also diminished without alteration of fructokinase expression levels. The normal levels of dihydroxyacetone phosphate and glyceraldehyde-3-phosphate observed in the FynKO liver extracts suggested normal triose kinase function. Fructose-bisphosphate aldolase (aldolase) mRNA or protein levels were normal in the Fyn-deficient livers, however, there was a large reduction in liver fructose-6-phosphate (30-fold) and fructose-1,6-bisphosphate (7-fold) levels as well as a reduction in glucose-6-phosphate (2-fold) levels. These data suggest a mechanistic defect in the allosteric regulation of aldolase activity.
    PLoS ONE 01/2013; 8(11):e81866. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cells are capable of metabolizing a variety of carbon substrates, including glucose, fatty acids, ketone bodies, and amino acids. Cellular fuel choice not only fulfills specific biosynthetic needs, but also enables programmatic adaptations to stress conditions beyond compensating for changes in nutrient availability. Emerging evidence indicates that specific switches from utilization of one substrate to another can have protective or permissive roles in disease pathogenesis. Understanding the molecular determinants of cellular fuel preference may provide insights into the homeostatic control of stress responses, and unveil therapeutic targets. Here, we highlight overarching themes encompassing cellular fuel choice; its link to cell fate and function; its advantages in stress protection; and its contribution to metabolic dependencies and maladaptations in pathological conditions.
    Trends in cell biology 09/2013; · 12.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Serotonin (5-HT) is a hormone that has been implicated in the regulation of many physiological and pathological events. One of the most intriguing properties of this hormone is its ability to up-regulate mitosis. Moreover, 5-HT stimulates glucose uptake and up-regulates PFK activity through the 5-HT(2A) receptor, resulting in the phosphorylation of a tyrosine residue of PFK and the intracellular redistribution of PFK within skeletal muscle. The present study investigated some of the signaling intermediates involved in the effects of 5-HT on 6-phosphofructo-1-kinase (PFK) regulation from skeletal muscle using kinetic assessments, immunoprecipitation, and western blotting assays. Our results demonstrate that 5-HT stimulates PFK from skeletal muscle via phospholipase C (PLC). The activation of PLC in skeletal muscle leads to the recruitment of protein kinase C (PKC) and calmodulin and the stimulation of calmodulin kinase II, which associates with PFK upon 5-HT action. Alternatively, 5-HT loses its ability to up-regulate PFK activity when Janus kinase is inhibited, suggesting that 5-HT is able to control glycolytic flux in the skeletal muscle of mice by recruiting different pathways and controlling PFK activity.
    Molecular and Cellular Biochemistry 09/2012; · 2.33 Impact Factor


Available from
Jun 3, 2014