Article

Gain of function NaV1.7 mutations in idiopathic small fiber neuropathy

Department of Neurology, University Medical Center Maastricht, Maastricht, The Netherlands.
Annals of Neurology (Impact Factor: 11.91). 01/2012; 71(1):26-39. DOI: 10.1002/ana.22485
Source: PubMed

ABSTRACT Small nerve fiber neuropathy (SFN) often occurs without apparent cause, but no systematic genetic studies have been performed in patients with idiopathic SFN (I-SFN). We sought to identify a genetic basis for I-SFN by screening patients with biopsy-confirmed idiopathic SFN for mutations in the SCN9A gene, encoding voltage-gated sodium channel Na(V)1.7, which is preferentially expressed in small diameter peripheral axons.
Patients referred with possible I-SFN, who met the criteria of ≥2 SFN-related symptoms, normal strength, tendon reflexes, vibration sense, and nerve conduction studies, and reduced intraepidermal nerve fiber density (IENFD) plus abnormal quantitative sensory testing (QST) and no underlying etiology for SFN, were assessed clinically and by screening of SCN9A for mutations and functional analyses.
Twenty-eight patients who met stringent criteria for I-SFN including abnormal IENFD and QST underwent SCN9A gene analyses. Of these 28 patients with biopsy-confirmed I-SFN, 8 were found to carry novel mutations in SCN9A. Functional analysis revealed multiple gain of function changes in the mutant channels; each of the mutations rendered dorsal root ganglion neurons hyperexcitable.
We show for the first time that gain of function mutations in sodium channel Na(V)1.7, which render dorsal root ganglion neurons hyperexcitable, are present in a substantial proportion (28.6%; 8 of 28) of patients meeting strict criteria for I-SFN. These results point to a broader role of Na(V)1.7 mutations in neurological disease than previously considered from studies on rare genetic syndromes, and suggest an etiological basis for I-SFN, whereby expression of gain of function mutant sodium channels in small diameter peripheral axons may cause these fibers to degenerate.

Download full-text

Full-text

Available from: Xiaoyang Cheng, Aug 19, 2015
2 Followers
 · 
528 Views
  • Source
    • "The clinical phenotype of paroxysmal itch in the presently described family is different from that previously reported in patients carrying the I739 variant, in whom distal pain and dysautonomia were prominent.[9; 11; 12] However, one of those patients complained of itch at the face, feet and lower limbs since childhood.[9] Also in one SFN patient of a kindred harboring the L554P variant of SCN10A gene, which encodes Nav1.8 sodium channel, nocturnal itch was the prominent feature [10]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Itch is a common experience. It can occur in the course of systemic diseases and be one manifestation of allergies, or the consequence of diseases affecting the somatosensory pathway. We describe a kindred characterized by paroxysmal itch caused by a variant in SCN9A gene encoding for the Nav1.7 sodium channel. Patients underwent clinical and somatosensory profile assessment by quantitative sensory testing, nerve conduction study, autonomic cardiovascular reflex and sympathetic skin response examination, skin biopsy with quantification of intraepidermal nerve fiber density and SCN9A mutational analysis. The index patient, her mother and a sister presented with a stereotypical clinical picture characterized by paroxysmal itch attacks involving the shoulders, upper back and upper limbs, followed by transient burning pain, triggered by environmental warmth, hot drinks and spicy food. Somatosensory profile assessment demonstrated a remarkably identical pattern of increased cold and pain thresholds and paradoxical heat sensation. Autonomic tests were negative, whereas skin biopsy revealed decreased intraepidermal nerve fiber density in two of the three patients. All affected members harbored the 2215A>G I739V substitution in exon 13 of SCN9A gene. Pregabalin treatment reduced itch intensity and attack frequency in all patients. The co-segregation of the I739V variant in the affected members of the family provides evidence, for the first time, that paroxysmal itch can be related to a mutation in sodium channel gene.
    Pain 05/2014; 155(9). DOI:10.1016/j.pain.2014.05.006 · 5.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sodium channel NaV1.7 is preferentially expressed within dorsal root ganglia (DRG), trigeminal ganglia and sympathetic ganglion neurons and their fine-diamter axons, where it acts as a threshold channel, amplifying stimuli such as generator potentials in nociceptors. Gain-of-function mutations and variants (single amino acid substitutions) of NaV1.7 have been linked to three pain syndromes: Inherited Erythromelalgia (IEM), Paroxysmal Extreme Pain Disorder (PEPD), and Small Fiber Neuropathy (SFN). IEM is characterized clinically by burning pain and redness that is usually focused on the distal extremities, precipitated by mild warmth and relieved by cooling, and is caused by mutations that hyperpolarize activation, slow deactivation, and enhance the channel ramp response. PEPD is characterized by perirectal, periocular or perimandibular pain, often triggered by defecation or lower body stimulation, and is caused by mutations that severely impair fast-inactivation. SFN presents a clinical picture dominated by neuropathic pain and autonomic symptoms; gain-of-function variants have been reported to be present in approximately 30% of patients with biopsy-confirmed idiopathic SFN, and functional testing has shown altered fast-inactivation, slow-inactivation or resurgent current. In this paper we describe three patients who house the NaV1.7/I228M variant. We have used clinical assessment of patients, quantitative sensory testing and skin biopsy to study these patients, including two siblings in one family, in whom genomic screening demonstrated the I228M NaV1.7 variant. Electrophysiology (voltage-clamp and current-clamp) was used to test functional effects of the variant channel. We report three different clinical presentations of the I228M NaV1.7 variant: presentation with severe facial pain, presentation with distal (feet, hands) pain, and presentation with scalp discomfort in three patients housing this NaV1.7 variant, two of which are from a single family. We also demonstrate that the NaV1.7/I228M variant impairs slow-inactivation, and produces hyperexcitability in both trigeminal ganglion and DRG neurons. Our results demonstrate intra- and interfamily phenotypic diversity in pain syndromes produced by a gain-of-function variant of NaV1.7.
    Molecular Pain 12/2011; 7:92. DOI:10.1186/1744-8069-7-92 · 3.53 Impact Factor
  • Annals of Neurology 01/2012; 71(1):3-4. DOI:10.1002/ana.22666 · 11.91 Impact Factor
Show more