Article

Increased sensitivity to broadly neutralizing antibodies of end-stage disease R5 HIV-1 correlates with evolution in Env glycosylation and charge.

Department of Laboratory Medicine, Lund University, Lund, Sweden.
PLoS ONE (Impact Factor: 3.53). 01/2011; 6(6):e20135. DOI: 10.1371/journal.pone.0020135
Source: PubMed

ABSTRACT Induction of broadly neutralizing antibodies, such as the monoclonal antibodies IgGb12, 2F5 and 2G12, is the objective of most antibody-based HIV-1 vaccine undertakings. However, despite the relative conserved nature of epitopes targeted by these antibodies, mechanisms underlying the sensitivity of circulating HIV-1 variants to broadly neutralizing antibodies are not fully understood. Here we have studied sensitivity to broadly neutralizing antibodies of HIV-1 variants that emerge during disease progression in relation to molecular alterations in the viral envelope glycoproteins (Env), using a panel of primary R5 HIV-1 isolates sequentially obtained before and after AIDS onset.
HIV-1 R5 isolates obtained at end-stage disease, after AIDS onset, were found to be more sensitive to neutralization by TriMab, an equimolar mix of the IgGb12, 2F5 and 2G12 antibodies, than R5 isolates from the chronic phase. The increased sensitivity correlated with low CD4(+) T cell count at time of virus isolation and augmented viral infectivity. Subsequent sequence analysis of multiple env clones derived from the R5 HIV-1 isolates revealed that, concomitant with increased TriMab neutralization sensitivity, end-stage R5 variants displayed envelope glycoproteins (Envs) with reduced numbers of potential N-linked glycosylation sites (PNGS), in addition to increased positive surface charge. These molecular changes in Env also correlated to sensitivity to neutralization by the individual 2G12 monoclonal antibody (mAb). Furthermore, results from molecular modeling suggested that the PNGS lost at end-stage disease locate in the proximity to the 2G12 epitope.
Our study suggests that R5 HIV-1 variants with increased sensitivity to broadly neutralizing antibodies, including the 2G12 mAb, may emerge in an opportunistic manner during severe immunodeficiency as a consequence of adaptive molecular Env changes, including loss of glycosylation and gain of positive charge.

0 Bookmarks
 · 
170 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The human immunodeficiency virus type 1 (HIV-1) envelope protein provides the primary contact between the virus and host and is the main target of the adaptive humoral immune response. The length of the gp120 variable loops and the number of N-linked glycosylation events are key determinants for virus infectivity and immune escape, while the V3 loop overall positive charge is known to affect co-receptor tropism. We selected two families in which both parents and two children had been infected with HIV-1 for nearly 10 years but who demonstrated variable parameters of disease progression. We analyzed the gp120 envelope sequence and compared individuals that progressed to those that did not in order to decipher evolutionary alterations that are associated with disease progression when individuals are infected with genetically related virus strains. The analysis of the V3 positive charge demonstrated an association between higher V3 positive charges with disease progression. The ratio between the amino acid length and the number of potential N-linked glycosylation sites was also shown to be associated with disease progression with the healthier family members having a lower ratio. In conclusion in individuals initially infected with genetically linked virus strains the V3 positive charges and N-linked glycosylation are associated with HIV-1 disease progression and follow varied evolutionary paths for individuals with varied disease progression.
    Journal of General Virology 09/2012; · 3.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polyclonal serum consists of vast collections of antibodies, products of differentiated B-cells. The spectrum of antibody specificities is dynamic and varies with age, physiology, and exposure to pathological insults. The complete repertoire of antibody specificities in blood, the IgOme, is therefore an extraordinarily rich source of information-a molecular record of previous encounters as well as a status report of current immune activity. The ability to profile antibody specificities of polyclonal serum at exceptionally high resolution has been an important and serious challenge which can now be overcome. Here we illustrate the application of Deep Panning, a method that combines the flexibility of combinatorial phage display of random peptides with the power of high-throughput deep sequencing. Deep Panning is first applied to evaluate the quality and diversity of naïve random peptide libraries. The production of very large data sets, hundreds of thousands of peptides, has revealed unexpected properties of combinatorial random peptide libraries and indicates correctives to ensure the quality of the libraries generated. Next, Deep Panning is used to analyze a model monoclonal antibody in addition to allowing one to follow the dynamics of biopanning and peptide selection. Finally Deep Panning is applied to profile polyclonal sera derived from HIV infected individuals. The ability to generate and characterize hundreds of thousands of affinity-selected peptides creates an effective means towards the interrogation of the IgOme and understanding of the humoral response to disease. Deep Panning should open the door to new possibilities for serological diagnostics, vaccine design and the discovery of the correlates of immunity to emerging infectious agents.
    PLoS ONE 08/2012; 7(8):e41469. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A better understanding of how the biological functions of the HIV-1 envelope (Env) changes during disease progression may aid the design of an efficacious anti-HIV-1 vaccine. Although studies from patient had provided some insights on this issue, the differences in the study cohorts and methodology had make it difficult to reach a consensus of the variations in the HIV-1 Env functions during disease progression. To this end, an animal model that can be infected under controlled environment and reflect the disease course of HIV-1 infection in human will be beneficial. Such an animal model was previously demonstrated by the infection of macaque with SHIV, expressing HIV-1 clade C Env V1-V5 region. By using this model, we examined the changes in biological functions of Env in the infected animal over the entire disease course. Our data showed an increase in the neutralization resistance phenotype over time and coincided with the decrease in the net charges of the V1-V5 region. Infection of PBMC with provirus expressing various Env clones, isolated from the infected animal over time, showed a surprisingly better replicative fitness for viruses expressing the Env from early time point. Biotinylation and ELISA data also indicated a decrease of cell-surface-associated Env and virion-associated gp120 content with disease progression. This decrease did not affect the CD4-binding capability of Env, but were positively correlated with the decrease of Env fusion ability. Interestingly, some of these changes in biological functions reverted to the pre-AIDS level during advance AIDS. These data suggested a dynamic relationship between the Env V1-V5 region with the host immune pressure. The observed changes of biological functions in this setting might reflect and predict those occurring during natural disease progression in human.
    PLoS ONE 01/2013; 8(6):e66973. · 3.53 Impact Factor

Full-text (2 Sources)

View
25 Downloads
Available from
Jun 1, 2014