Article

A Dual Infection Pseudorabies Virus Conditional Reporter Approach to Identify Projections to Collateralized Neurons in Complex Neural Circuits

Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.
PLoS ONE (Impact Factor: 3.53). 06/2011; 6(6):e21141. DOI: 10.1371/journal.pone.0021141
Source: PubMed

ABSTRACT Replication and transneuronal transport of pseudorabies virus (PRV) are widely used to define the organization of neural circuits in rodent brain. Here we report a dual infection approach that highlights connections to neurons that collateralize within complex networks. The method combines Cre recombinase (Cre) expression from a PRV recombinant (PRV-267) and Cre-dependent reporter gene expression from a second infecting strain of PRV (PRV-263). PRV-267 expresses both Cre and a monomeric red fluorescent protein (mRFP) fused to viral capsid protein VP26 (VP26-mRFP) that accumulates in infected cell nuclei. PRV-263 carries a Brainbow cassette and expresses a red (dTomato) reporter that fills the cytoplasm. However, in the presence of Cre, the dTomato gene is recombined from the cassette, eliminating expression of the red reporter and liberating expression of either yellow (EYFP) or cyan (mCerulean) cytoplasmic reporters. We conducted proof-of-principle experiments using a well-characterized model in which separate injection of recombinant viruses into the left and right kidneys produces infection of neurons in the renal preautonomic network. Neurons dedicated to one kidney expressed the unique reporters characteristic of PRV-263 (cytoplasmic dTomato) or PRV-267 (nuclear VP26-mRFP). Dual infected neurons expressed VP26-mRFP and the cyan or yellow cytoplasmic reporters activated by Cre-mediated recombination of the Brainbow cassette. Differential expression of cyan or yellow reporters in neurons lacking VP26-mRFP provided a unique marker of neurons synaptically connected to dual infected neurons, a synaptic relationship that cannot be distinguished using other dual infection tracing approaches. These data demonstrate Cre-enabled conditional reporter expression in polysynaptic circuits that permits the identification of collateralized neurons and their presynaptic partners.

0 Bookmarks
 · 
108 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: To determine the spinal innervation and neuronal connections is important for studying gastric carbohydrate metabolism and motor responses. Neurons involved in the efferent control of the stomach were identified following visualization of pseudorabies virus (PRV)-614 retrograde tracing. PRV-614 was injected into the ventral stomach wall in 13 adult C57BL/6J strain male mice. On the fifth day postinjection, animals were humanely sacrificed, and spinal cords were removed and sectioned, and processed for PRV visualization. The virus injected into the ventral stomach wall was specifically transported to the thoracic spinal cord. At 5 d after injection of the PRV-614, stomach enlargement and tissue edema were found, and PRV-614 positive cells were found in the intermediolateral cell column, the intercalates nucleus or the central autonomic nucleus of spinal cord segments T3 to L1, and major PRV-614 labeled cells were focused in the T6-10 segment. Our results revealed neuroanatomical circuits between stomach and the spinal intermediolateral cell column neurons.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian brain contains tremendous structural and genetic complexity that is vital for its function. The elucidation of gene expression profiles in the brain, coupled with the development of large-scale connectivity maps and emerging viral vector-based approaches for target-selective gene manipulation, now allow for detailed dissection of gene-circuit interfaces. This protocol details how to perform combinatorial viral injections to manipulate gene expression in subsets of neurons interconnecting two brain regions. This method utilizes stereotaxic injection of a retrograde transducing CAV2-Cre virus into one brain region, combined with injection of a locally transducing Cre-dependent AAV virus into another brain region. This technique is widely applicable to the genetic dissection of neural circuitry, as it enables selective expression of candidate genes, dominant-negatives, fluorescent reporters, or genetic tools within heterogeneous populations of neurons based upon their projection targets.
    Current protocols in neuroscience / editorial board, Jacqueline N. Crawley ... [et al.] 10/2013; 4(435):4.35.1-4.35.20. DOI:10.1002/0471142301.ns0435s65
  • [Show abstract] [Hide abstract]
    ABSTRACT: Brainbow is a genetic cell-labeling technique where hundreds of different hues can be generated by stochastic and combinatorial expression of a few spectrally distinct fluorescent proteins. Unique color profiles can be used as cellular identification tags for multiple applications such as tracing axons through the nervous system, following individual cells during development, or analyzing cell lineage. In recent years, Brainbow and other combinatorial expression strategies have expanded from the mouse nervous system to other model organisms and a wide variety of tissues. Particularly exciting is the application of Brainbow in lineage tracing, where this technique has been instrumental in parsing out complex cellular relationships during organogenesis. Here we review recent findings, new technical improvements, and exciting potential genetic and genomic applications for harnessing this colorful technique in anatomical, developmental, and genetic studies. Copyright © 2015 by the Genetics Society of America.
    Genetics 02/2015; 199(2):293-306. DOI:10.1534/genetics.114.172510 · 4.87 Impact Factor

Full-text (4 Sources)

Download
25 Downloads
Available from
Jun 3, 2014