Article

Biomarkers in chronic kidney disease: a review

Renal Research, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.
Kidney International (Impact Factor: 8.52). 06/2011; 80(8):806-21. DOI: 10.1038/ki.2011.198
Source: PubMed

ABSTRACT Chronic kidney disease (CKD) is a major public health problem. The classification of CKD by KDOQI and KDIGO and the routine eGFR reporting have resulted in increased identification of CKD. It is important to be able to identify those at high risk of CKD progression and its associated cardiovascular disease (CVD). Proteinuria is the most sensitive marker of CKD progression in clinical practice, especially when combined with eGFR, but these have limitations. Hence, early, more sensitive, biomarkers are required. Recently, promising biomarkers have been identified for CKD progression and its associated CVD morbidity and mortality. These may be more sensitive biomarkers of kidney function, the underlying pathophysiological processes, and/or cardiovascular risk. Although there are some common pathways to CKD progression, there are many primary causes, each with its own specific pathophysiological mechanism. Hence, a panel measuring multiple biomarkers including disease-specific biomarkers may be required. Large, longitudinal observational studies are needed to validate candidate biomarkers in a broad range of populations prior to implementation into routine CKD management. Recent renal biomarkers discovered include neutrophil gelatinase-associated lipocalin, kidney injury molecule-1, and liver-type fatty acid-binding protein. Although none are ready for use in clinical practice, it is timely to review the role of such biomarkers in predicting CKD progression and/or CVD risk in CKD.

Full-text

Available from: Robert G Fassett, May 03, 2015
5 Followers
 · 
688 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 1. Overview of Biomarkers for Diagnosis and Monitoring of Celiac Disease 2. Cystatin C: A Kidney Function Biomarker 3. Procalcitonin: Potential Role in Diagnosis and Management 4. Manganese Superoxide Dismutase and Oxidative Stress Modulation 5. Selenium and Selenium-Dependent Antioxidants in Chronic Kidney Disease 6. Lipidomics:New Insight Into Kidney Disease
    Advances in clinical chemistry 02/2015; 68. · 4.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aging is associated with an increase in a chronic, low-grade inflammation. This phenomenon, termed "inflammaging" is also a risk factor for both morbidity and mortality in the elderly. Frequent co-occurrence of chronic diseases, known as multi-morbidity, may be explained by interconnected pathophysiology of these conditions, most of which depend on its inflammatory component. Here we present an analysis of the U.S. National Health and Nutrition Examination Survey data collected between 1999 and 2008, for the presence, and the number, of chronic diseases along with HDL-cholesterol, C-reactive protein, white blood cell count, lymphocyte percent, monocyte percent, segmented neutrophils percent, eosinophils percent, basophils percent, and glycohemoglobin levels. Importantly, even after adjustment for age and BMI, many inflammatory markers continued to be associated to multi-morbidity. C-reactive protein (CRP) levels and Glasgow Prognostic Score (GPS) were most dramatically increased in parallel with an accumulation of chronic diseases, and may be utilized as multi-morbidity predictors. These observations point at background inflammation as direct, age-independent contributor to an accumulation of the disease burden. Our findings also suggest a possibility that systemic inflammation associated with chronic diseases may explain accelerated aging phenomenon previously observed among the patients with heavy disease burden.
    Oncotarget 12/2014; · 6.63 Impact Factor
  • Source
    Disease markers 03/2015; 2015. DOI:10.1155/2015/586569 · 2.17 Impact Factor