Biomarkers in chronic kidney disease: A review

Renal Research, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.
Kidney International (Impact Factor: 8.56). 06/2011; 80(8):806-21. DOI: 10.1038/ki.2011.198
Source: PubMed


Chronic kidney disease (CKD) is a major public health problem. The classification of CKD by KDOQI and KDIGO and the routine eGFR reporting have resulted in increased identification of CKD. It is important to be able to identify those at high risk of CKD progression and its associated cardiovascular disease (CVD). Proteinuria is the most sensitive marker of CKD progression in clinical practice, especially when combined with eGFR, but these have limitations. Hence, early, more sensitive, biomarkers are required. Recently, promising biomarkers have been identified for CKD progression and its associated CVD morbidity and mortality. These may be more sensitive biomarkers of kidney function, the underlying pathophysiological processes, and/or cardiovascular risk. Although there are some common pathways to CKD progression, there are many primary causes, each with its own specific pathophysiological mechanism. Hence, a panel measuring multiple biomarkers including disease-specific biomarkers may be required. Large, longitudinal observational studies are needed to validate candidate biomarkers in a broad range of populations prior to implementation into routine CKD management. Recent renal biomarkers discovered include neutrophil gelatinase-associated lipocalin, kidney injury molecule-1, and liver-type fatty acid-binding protein. Although none are ready for use in clinical practice, it is timely to review the role of such biomarkers in predicting CKD progression and/or CVD risk in CKD.

Download full-text


Available from: Robert G Fassett,
  • Source
    • "The natriuretic peptides are a family of hormones that play a major role in sodium and body volume homeostasis; specifically they control natriuresis, vasodilatation, and diuresis [4]. Three major natriuretic peptides have been identified: atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), and C-type natriuretic peptide (CNP). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The high incidence of cardiovascular events in chronic kidney disease (CKD) warrants an accurate evaluation of risk aimed at reducing the burden of disease and its consequences. The use of biomarkers to identify patients at high risk has been in use in the general population for several decades and has received mixed reactions in the medical community. Some practitioners have become staunch supporters and users while others doubt the utility of biomarkers and rarely measure them. In CKD patients numerous markers similar to those used in the general population and others more specific to the uremic population have emerged; however their utility for routine clinical application remains to be fully elucidated. The reproducibility and standardization of the serum assays are serious limitations to the broad implementation of these tests. The lack of focused research and validation in randomized trials rather than ad hoc measurement of multiple serum markers in observational studies is also cause for concern related to the clinical applicability of these markers. We review the current literature on biomarkers that may have a relevant role in field of nephrology.
    Disease markers 03/2015; 2015. DOI:10.1155/2015/586569 · 1.56 Impact Factor
  • Source
    • "Systems biology allows on-time analysis of regulatory and biologic networks in cell metabolism [21] [22] [23]. Comprehensive characterization of renal diseases could provide important and integrative information to better characterize molecular relationships underlying this pathophysiology in order to develop more reliable and specific markers for diagnosis, prognosis, prevention, and therapeutic response [2] [24]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Due to the incidence of type-2 diabetes and hypertension, chronic kidney disease (CKD) has emerged as a major public health problem worldwide. CKD results in premature death from accelerated cardiovascular disease and various other complications. Early detection, careful monitoring of renal function, and response to therapeutic intervention are critical for prevention of CKD progression and its complications. Unfortunately, traditional biomarkers of renal function are insufficiently sensitive or specific to detect early stages of disease when therapeutic intervention is most effective. Therefore, more sensitive biomarkers of kidney disease are needed for early diagnosis, monitoring, and effective treatment. CKD results in profound changes in lipid and lipoprotein metabolism that, in turn, contribute to progression of CKD and its cardiovascular complications. Lipids and lipid-derived metabolites play diverse and critically important roles in the structure and function of cells, tissues, and biofluids. Lipidomics is a branch of metabolomics, which encompasses the global study of lipids and their biologic function in health and disease including identification of biomarkers for diagnosis, prognosis, prevention, and therapeutic response for various diseases. This review summarizes recent developments in lipidomics and its application to various kidney diseases including chronic glomerulonephritis, IgA nephropathy, chronic renal failure, renal cell carcinoma, diabetic nephropathy, and acute renal failure in clinical and experimental research. Analytical technologies, data analysis, as well as currently known metabolic biomarkers of kidney diseases are addressed. Future perspectives and potential limitations of lipidomics are discussed. © 2015 Elsevier Inc. All rights reserved.
    Advances in clinical chemistry 02/2015; 68:153-175. DOI:10.1016/bs.acc.2014.11.002 · 2.65 Impact Factor
  • Source
    • "Blood urea nitrogen and microalbuminuria are also established biomarkers for kidney disease progression. However, since these biomarkers are not sensitive enough to predict kidney disease progression, various new biomarkers have been proposed recently such as neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1) and liver-type fatty acid-binding protein (L-FABP), and are under thorough clinical validations [2], [3]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Urinary exosomes and microvesicles (EMV) are promising biomarkers for renal diseases. Although the density of EMV is very low in urine, large quantity of urine can be easily obtained. In order to analyze urinary EMV mRNA, a unique filter device to adsorb urinary EMV from 10 mL urine was developed, which is far more convenient than the standard ultracentrifugation protocol. The filter part of the device is detachable and aligned to a 96-well microplate format, therefore multiple samples can be processed simultaneously in a high throughput manner following the isolation step. For EMV mRNA quantification, the EMV on the filter is lysed directly by adding lysis buffer and transferred to an oligo(dT)-immobilized microplate for mRNA isolation followed by cDNA synthesis and real-time PCR. Under the optimized assay condition, our method provided comparable or even superior results to the standard ultracentrifugation method in terms of mRNA assay sensitivity, linearity, intra-assay reproducibility, and ease of use. The assay system was applied to quantification of kidney-specific mRNAs such as NPHN and PDCN (glomerular filtration), SLC12A1 (tubular absorption), UMOD and ALB (tubular secretion), and AQP2 (collecting duct water absorption). 12-hour urine samples were collected from four healthy subjects for two weeks, and day-to-day and individual-to-individual variations were investigated. Kidney-specific genes as well as control genes (GAPDH, ACTB, etc.) were successfully detected and confirmed their stable expressions through the two-week study period. In conclusion, this method is readily available to clinical studies of kidney diseases.
    PLoS ONE 10/2014; 9(10):e109074. DOI:10.1371/journal.pone.0109074 · 3.23 Impact Factor
Show more