In Vivo Intervertebral Disc Characterization Using Magnetic Resonance Spectroscopy and T-1 rho Imaging Association With Discography and Oswestry Disability Index and Short Form-36 Health Survey

Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
Spine (Impact Factor: 2.3). 06/2011; 37(3):214-21. DOI: 10.1097/BRS.0b013e3182294a63
Source: PubMed


An in vivo study of intervertebral disc degeneration by using quantitative magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS).
To quantify water and proteoglycan (PG) content in the intervertebral disc by using in vivo MRS and to evaluate the relationship between MRS-quantified water/PG content, T1ρ, Pfirrmann score, clinical self-assessment, and discography.
Previous in vitro studies have investigated the relationship between MRS-quantified water/PG content and degenerative grade by using cadaveric intervertebral discs. T1ρ has been shown to relate to Pfirrmann grade and clinical self-assessment. However, the associations between MRS-quantified water/PG content, MRI-based T1ρ, self-assessment of health status, and clinical response to discography have not been studied in vivo.
MRS and MRI were performed in 26 patients (70 discs) with symptomatic intervertebral degenerative disc (IVDD) and 23 controls (41 discs). Patients underwent evaluation of intervertebral discs with provocative discography. All subjects completed the Short Form-36 Health Survey and Oswestry Disability Index questionnaires.
The water/PG peak area ratio was significantly elevated in (a) patients (compared with controls) and in (b) discs with positive discography (compared with negative discography). Magnetic resonance (MR) T1ρ exhibited similar trends. A significant association was found between T1ρ and normalized PG content (R = 0.61, P < 0.05) but not between T1ρ and normalized water content (R = 0.24, P > 0.05). The water/PG peak area ratio, normalized water, normalized PG, and Pfirrmann grade were significantly associated with patient self-assessment of disability and physical composite score, while disc height was not.
This study demonstrated a relationship between in vivo MRS spectroscopy (water content and PG content), imaging parameters (T1ρ and Pfirrmann grade), discography results, and clinical self-assessment, suggesting that MRS-quantified water, PG, and MR T1ρ relaxation time may potentially serve as biomarkers of symptomatic IVDD.

Download full-text


Available from: Sharmila Majumdar, Jul 09, 2014
  • Source
    • "Moreover, multi-parametric MRI is known to provide information on mechanical, structural and biochemical properties of the IVD [50-53] and could lead to new indices reflecting more aspects of the changes induced in the IVD by spine pathologies. Proton MR-spectroscopy, which evaluates the relative concentration of metabolites in tissues, might be used to assess IVD degeneration and proteoglycan content [54,55]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Early stages of scoliosis and spondylolisthesis entail changes in the intervertebral disc (IVD) structure and biochemistry. The current clinical use of MR T2-weighted images is limited to visual inspection. Our hypothesis is that the distribution of the MRI signal intensity within the IVD in T2-weighted images depends on the spinal pathology and on its severity. Therefore, this study aims to develop the AMRSID (analysis of MR signal intensity distribution) method to analyze the 3D distribution of the MR signal intensity within the IVD and to evaluate their sensitivity to scoliosis and spondylolisthesis and their severities. Methods This study was realized on 79 adolescents who underwent a MRI acquisition (sagittal T2-weighted images) before their orthopedic or surgical treatment. Five groups were considered: low severity scoliosis (Cobb angle ≤50°), high severity scoliosis (Cobb angles >50°), low severity spondylolisthesis (Meyerding grades I and II), high severity spondylolisthesis (Meyerding grades III, IV and V) and control. The distribution of the MRI signal intensity within the IVD was analyzed using the descriptive statistics of histograms normalized by either cerebrospinal fluid or bone signal intensity, weighted centers and volume ratios. Differences between pathology and severity groups were assessed using one- and two-way ANOVAs. Results There were significant (p < 0.05) variations of indices between scoliosis, spondylolithesis and control groups and between low and high severity groups. The cerebrospinal fluid normalization was able to detect differences between healthy and pathologic IVDs whereas the bone normalization, which reflects both bone and IVD health, detected more differences between the severities of these pathologies. Conclusions This study proves for the first time that changes in the intervertebral disc, non visible to the naked eye on sagittal T2-weighted MR images of the spine, can be detected from specific indices describing the distribution of the MR signal intensity. Moreover, these indices are able to discriminate between scoliosis and spondylolisthesis and their severities, and provide essential information on the composition and structure of the discs whatever the pathology considered. The AMRSID method may have the potential to complement the current diagnostic tools available in clinics to improve the diagnostic with earlier biomarkers, the prognosis of evolution and the treatment options of scoliosis and spondylolisthesis.
    BMC Musculoskeletal Disorders 12/2012; 13(1):239. DOI:10.1186/1471-2474-13-239 · 1.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE: To compare sodium imaging of lumbar intervertebral disks in asymptomatic volunteers at 7-T magnetic resonance (MR) imaging with quantitative T2 mapping and morphologic scoring at 3 T. MATERIALS AND METHODS: Following ethical board approval and informed consent, the L2-3 to L5-S1 disks were examined in 10 asymptomatic volunteers (nine men, one woman; mean age, 30 years; range, 23-43 years). At 7 T, normalized sodium signal-to-noise ratios were calculated, by using region-of-interest analysis. At 3 T, T2 mapping was performed with a multiecho spin-echo sequence (repetition time msec/echo times msec, 1500/24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156). T2 values were calculated over the nucleus, with a pixelwise, monoexponential nonnegative least-squares-fit analysis. Morphologic grading according to a modified Pfirrmann score was assessed independently by three experienced musculoskeletal radiologists, and Pearson correlation analysis of the covariates was performed. RESULTS: The mean normalized sodium signal intensity was 275.5±115.4 (standard deviation). The T2 mapping showed a mean value of 89.8 msec±19.34. The median modified Pfirrmann score was 2b (90% had score≤3c). The Pearson correlation coefficient showed a cubic function between sodium imaging and the modified Pfirrmann score, a moderate inverse correlation between T2 mapping and the modified Pfirrmann score (r=-0.62), and no correlation between sodium imaging and T2 mapping (r=0.06). CONCLUSION: The results suggest that MR imaging of the intervertebral disk, using sodium imaging and T2 mapping, can help characterize different component changes and that both of these methods are to some degree related to the Pfirrmann score.
    Radiology 08/2012; 265(2):555-64. DOI:10.1148/radiol.12111920 · 6.87 Impact Factor

  • Spine 09/2012; 37(19):1724. DOI:10.1097/BRS.0b013e3182659f28 · 2.30 Impact Factor
Show more