Acute skeletal muscle injury: CCL2 expression by both monocytes and injured muscle is required for repair.

Neuroinflammation Research Center, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave/S90, Cleveland, OH 44195, USA.
The FASEB Journal (Impact Factor: 5.7). 06/2011; 25(10):3344-55. DOI: 10.1096/fj.10-178939
Source: PubMed

ABSTRACT CC chemokine ligand 2 (CCL2), a ligand of CC chemokine receptor 2 (CCR2), is essential to mount an adequate inflammatory response to repair acute skeletal muscle injury. We studied the mechanisms by which CCL2 regulates muscle inflammation and regeneration. Mobilization of monocytes/macrophages (MOs/MPs) but not lymphocytes or neutrophils was impaired from bone marrow to blood and from blood to injured muscles in Ccl2(-/-) mice. This was accompanied by poor phagocytosis, reduced up-regulation of insulin-like growth factor-1 (IGF-1), and impaired muscle regeneration. Bone marrow transfer from wild-type mice to irradiated Ccr2(-/-) but not Ccl2(-/-) mice restored muscle inflammation. Intravenously injected CCL2-deficient bone marrow monocytes could not enter wild-type injured muscles as well as wild-type bone marrow monocytes. Intravenously injected wild-type bone marrow monocytes could not enter CCL2-deficient injured muscles as well as wild-type injured muscles. CCL2 stimulated IGF-1 expression by wild-type but not CCR2-deficient intramuscular macrophages. A single intramuscular injection of IGF-1, but not PBS, markedly improved muscle regeneration in Ccl2(-/-) mice. We conclude that CCL2 is a major ligand of CCR2 to recruit MOs/MPs into injured muscles to conduct phagocytosis and produce IGF-1 for injury repair. CCL2 needs to be expressed by bone marrow cells, circulating monocytes, and injured muscle tissue cells to recruit MOs/MPs into injured muscles. CCL2/CCR2 signaling also up-regulates IGF-1 expression by intramuscular macrophages to promote acute skeletal muscle injury repair.

  • [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that whey protein hydrolysate (WPH) causes a greater increase in muscle protein synthesis than does a mixture of amino acids that is identical in amino acid composition. The present study was conducted to investigate the effect of WPH on gene expression. Male Sprague-Dawley rats subjected to a 2 h swimming exercise were administered either a carbohydrate-amino acid diet or a carbohydrate-WPH diet immediately after exercise. At 1 h after exercise, epitrochlearis muscle mRNA was sampled and subjected to DNA microarray analysis. We found that ingestion of WPH altered 189 genes after considering the false discovery rate. Among the up-regulated genes, eight Gene Ontology (GO) terms were enriched, which included key elements such as Cd24, Ccl2, Ccl7 and Cxcl1 involved in muscle repair after exercise. In contrast, nine GO terms were enriched in gene sets that were down-regulated by the ingestion of WPH, and these GO terms fell into two clusters, 'regulation of ATPase activity' and 'immune response'. Furthermore, we found that WPH activated two upstream proteins, extracellular signal-regulated kinase 1/2 (ERK1/2) and hypoxia-inducible factor-1α (HIF-1α), which might act as key factors for regulating gene expression. These results suggest that ingestion of WPH, compared with ingestion of a mixture of amino acids with an identical amino acid composition, induces greater changes in the post-exercise gene expression profile via activation of the proteins ERK1/2 and HIF-1α.
    The British journal of nutrition 03/2014; · 3.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Monocyte/macrophage polarization in skeletal muscle regeneration is ill defined. We used CD11b-diphtheria toxin receptor transgenic mice to transiently deplete monocytes/macrophages at multiple stages before and after muscle injury induced by cardiotoxin. Fat accumulation within regenerated muscle was maximal when ablation occurred at the same time as cardiotoxin-induced injury. Early ablation (day 1 after cardiotoxin) resulted in the smallest regenerated myofiber size together with increased residual necrotic myofibers and fat accumulation. However, muscle regeneration after late (day 4) ablation was similar to controls. Levels of inflammatory cells in injured muscle following early ablation and associated with impaired muscle regeneration were determined by flow cytometry. Delayed, but exaggerated, monocyte [CD11b(+)(CD90/B220/CD49b/NK1.1/Ly6G)(-)(F4/80/I-Ab/CD11c)(-)Ly6C(+/-)] accumulation occurred; interestingly, Ly6C(+) and Ly6C(-) monocytes were present concurrently in ablated animals and control mice. In addition to monocytes, proinflammatory, Ly6C(+) macrophage accumulation following early ablation was delayed compared to controls. In both groups, CD11b(+)F4/80(+) cells exhibited minimal expression of the M2 markers CD206 and CD301. Nevertheless, early ablation delayed and decreased the transient accumulation of CD11b(+)F4/80(+)Ly6C(-)CD301(-) macrophages; in control animals, the later tissue accumulation of these cells appeared to correspond to that of anti-inflammatory macrophages, determined by cytokine production and arginase activity. In summary, impairments in muscle regeneration were associated with exaggerated monocyte recruitment and reduced Ly6C(-) macrophages; the switch of macrophage/monocyte subsets is critical to muscle regeneration.
    American Journal Of Pathology 02/2014; · 4.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A rotator cuff tear (RCT) is a common musculoskeletal disorder among elderly people. RCT is often treated conservatively for functional compensation by the remaining muscles. However, the mode of such compensation after RCT has not yet been fully understood. Here, we used the RCT rat model to investigate the compensatory process in the remaining muscles. The involvement of insulin-like growth factor 1 (IGF-1)/Akt signaling which potentially contributes to the muscle growth was also examined. The RCT made by transecting the supraspinatus (SSP) tendon resulted in atrophy of the SSP muscle. The remaining infraspinatus (ISP) muscle weight increased rapidly after a transient decrease (3 days), which could be induced by posttraumatic immobilization. The IGF-1 mRNA levels increased transiently at 7 days followed by a gradual increase thereafter in the ISP muscle, and those of IGF-1 receptor mRNA significantly increased after 3 days. IGF-1 protein levels biphasically increased (3 and 14 days), then gradually decreased thereafter. The IGF-1 protein levels tended to show a negative correlation with IGF-1 mRNA levels. These levels also showed a negative correlation with the ISP muscle weight, indicating that the increase in IGF-1 secretion may contribute to the ISP muscle growth. The pAkt/Akt protein ratio decreased transiently by 14 days, but recovered later. The IGF-1 protein levels were negatively correlated with the pAkt/Akt ratio. These results indicate that transection of the SSP tendon activates IGF-1/Akt signaling in the remaining ISP muscle for structural compensation. Thus, the remaining muscles after RCT can be a target for rehabilitation through the activation of IGF-1/Akt signaling.
    Physiological reports. 01/2014; 2(1):e00197.