Quantitative and functional alterations of plasmacytoid dendritic cells contribute to immune tolerance in ovarian cancer.

Departments of Medical Oncology, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Lyon, France.
Cancer Research (Impact Factor: 9.28). 06/2011; 71(16):5423-34. DOI: 10.1158/0008-5472.CAN-11-0367
Source: PubMed

ABSTRACT In ovarian cancer, the immune system fails to eradicate established tumors partly due to the induction of immune tolerance within tumor microenvironment. In this study, we investigated the contribution of plasmacytoid dendritic cells (pDC) in the establishment of immune tolerance in a cohort of 44 ovarian cancer patients. In the tumor and malignant ascites, CD4(+)CD123(+)BDCA2(+) pDC were the most abundant dendritic cell subset; however, they were profoundly depleted in peripheral blood. The presence of pDC in primary ovarian cancer, but not ascites, was an independent prognostic factor associated with early relapse. Following chemotherapy, we observed a partial restoration of blood pDC levels in patients in complete remission. These findings show preferential recruitment of pDC into tumors where they express a partially mature phenotype that may reflect an in situ activation. Importantly, compared with pDC found in ascites or blood, tumor-associated pDC (TApDC) produced less IFN-α, TNF-α, IL-6, macrophage inflammatory protein-1β, and RANTES in response to toll-like receptor stimulation, and alterations in pDC functions were mainly mediated through tumor-derived TNF-α and TGF-β. Unlike ascites-derived pDC, TApDC induced IL-10 production from allogeneic naive CD4(+) T lymphocytes, suggesting the existence of a paracrine immunosuppressive loop. Taken together, our findings indicate that both local and systemic dysfunction of pDC play a critical role in the progression of ovarian cancer via induction of immune tolerance.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD4+CD25+Foxp3+ regulatory T cells (Tregs) can inhibit cytotoxic responses. Though several studies have analyzed Treg frequency in the peripheral blood mononuclear cells (PBMCs) of pancreatic ductal adenocarcinoma (PDA) patients using flow cytometry (FCM), few studies have examined how intratumoral Tregs might contribute to immunosuppression in the tumor microenvironment. Thus, the potential role of intratumoral Tregs in PDA patients remains to be elucidated. In this study, we found that the percentages of Tregs, CD4+ T cells and CD8+ T cells were all increased significantly in tumor tissue compared to control pancreatic tissue, as assessed via FCM, whereas the percentages of these cell types in PBMCs did not differ between PDA patients and healthy volunteers. The percentages of CD8+ T cells in tumors were significantly lower than in PDA patient PBMCs. In addition, the relative numbers of CD4+CD25+Foxp3+ Tregs and CD8+ T cells were negatively correlated in the tissue of PDA patients, and the abundance of Tregs was significantly correlated with tumor differentiation. Additionally, Foxp3+ T cells were observed more frequently in juxtatumoral stroma (immediately adjacent to the tumor epithelial cells). Patients showing an increased prevalence of Foxp3+ T cells had a poorer prognosis, which was an independent factor for patient survival. These results suggest that Tregs may promote PDA progression by inhibiting the antitumor immunity of CD8+ T cells at local intratumoral sites. Moreover, a high proportion of Tregs in tumor tissues may reflect suppressed antitumor immunity.
    PLoS ONE 01/2014; 9(3):e91551. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported that plasmacytoid dendritic cells (pDCs) infiltrating breast tumors are impaired for their interferon-α (IFN-α) production, resulting in local regulatory T cells amplification. We designed our study to decipher molecular mechanisms of such functional defect of tumor-associated pDC (TApDC) in breast cancer. We demonstrate that besides IFN-α, the production by Toll-like receptor (TLR)-activated healthy pDC of IFN-β and TNF-α but not IP-10/CXCL10 nor MIP1-α/CCL3 is impaired by the breast tumor environment. Importantly, we identified TGF-β and TNF-α as major soluble factors involved in TApDC functional alteration. Indeed, recombinant TGF-β1 and TNF-α synergistically blocked IFN-α production of TLR-activated pDC, and neutralization of TGF-β and TNF-α in tumor-derived supernatants restored pDCs' IFN-α production. The involvment of tumor-derived TGF-β was further confirmed in situ by the detection of phosphorylated Smad2 in the nuclei of TApDC in breast tumor tissues. Mechanisms of type I IFN inhibition did not involve TLR downregulation but the inhibition of IRF-7 expression and nuclear translocation in pDC after their exposure to tumor-derived supernatants or recombinant TGF-β1 and TNF-α. Our findings indicate that targeting TApDC to restore their IFN-α production might be an achievable strategy to induce antitumor immunity in breast cancer by combining TLR7/9-based immunotherapy with TGF-β and TNF-α antagonists.
    International Journal of Cancer 08/2013; 133(3). · 6.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Few studies have examined immune activation profiles in patients with advanced HIV-1 subtype C infection or assessed their potential to predict responsiveness to HAART. BioPlex, ELISA, and nephelometric procedures were used to measure plasma levels of inflammatory biomarkers in HIV-1 subtype C-infected patients sampled before and after 6 months of successful HAART (n = 20); in patients failing HAART (n = 30); and in uninfected controls (n = 8). Prior to HAART, CXCL9, CXCL10, β 2M, sTNF-R1, TGF- β 1, IFN- γ , IL-6, TNF, and sCD14 were significantly elevated in HIV-1-infected patients compared to controls (P < 0.01). All of these markers, with the exception of sTNF-R1, were also elevated in patients failing HAART (P < 0.05). The persistently elevated levels of CXCL9, CXCL10, and β 2M in patients failing therapy in the setting of a marked reduction in these markers in patients on successful HAART suggest that they may be useful not only to monitor immune activation during HAART, but also to distinguish between good and poor responders. In the case of sCD14 and TGF- β 1, the levels of these biomarkers remained persistently elevated despite HAART-induced virological suppression, a finding that is consistent with ongoing monocyte-macrophage activation, underscoring a potential role for adjuvant anti-inflammatory therapy.
    Mediators of Inflammation 01/2014; 2014:198413. · 3.88 Impact Factor

Michael Gobert