Article

Quantitative and functional alterations of plasmacytoid dendritic cells contribute to immune tolerance in ovarian cancer.

Departments of Medical Oncology, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Lyon, France.
Cancer Research (Impact Factor: 9.28). 06/2011; 71(16):5423-34. DOI: 10.1158/0008-5472.CAN-11-0367
Source: PubMed

ABSTRACT In ovarian cancer, the immune system fails to eradicate established tumors partly due to the induction of immune tolerance within tumor microenvironment. In this study, we investigated the contribution of plasmacytoid dendritic cells (pDC) in the establishment of immune tolerance in a cohort of 44 ovarian cancer patients. In the tumor and malignant ascites, CD4(+)CD123(+)BDCA2(+) pDC were the most abundant dendritic cell subset; however, they were profoundly depleted in peripheral blood. The presence of pDC in primary ovarian cancer, but not ascites, was an independent prognostic factor associated with early relapse. Following chemotherapy, we observed a partial restoration of blood pDC levels in patients in complete remission. These findings show preferential recruitment of pDC into tumors where they express a partially mature phenotype that may reflect an in situ activation. Importantly, compared with pDC found in ascites or blood, tumor-associated pDC (TApDC) produced less IFN-α, TNF-α, IL-6, macrophage inflammatory protein-1β, and RANTES in response to toll-like receptor stimulation, and alterations in pDC functions were mainly mediated through tumor-derived TNF-α and TGF-β. Unlike ascites-derived pDC, TApDC induced IL-10 production from allogeneic naive CD4(+) T lymphocytes, suggesting the existence of a paracrine immunosuppressive loop. Taken together, our findings indicate that both local and systemic dysfunction of pDC play a critical role in the progression of ovarian cancer via induction of immune tolerance.

0 Bookmarks
 · 
82 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Few studies have examined immune activation profiles in patients with advanced HIV-1 subtype C infection or assessed their potential to predict responsiveness to HAART. BioPlex, ELISA, and nephelometric procedures were used to measure plasma levels of inflammatory biomarkers in HIV-1 subtype C-infected patients sampled before and after 6 months of successful HAART (n = 20); in patients failing HAART (n = 30); and in uninfected controls (n = 8). Prior to HAART, CXCL9, CXCL10, β 2M, sTNF-R1, TGF- β 1, IFN- γ , IL-6, TNF, and sCD14 were significantly elevated in HIV-1-infected patients compared to controls (P < 0.01). All of these markers, with the exception of sTNF-R1, were also elevated in patients failing HAART (P < 0.05). The persistently elevated levels of CXCL9, CXCL10, and β 2M in patients failing therapy in the setting of a marked reduction in these markers in patients on successful HAART suggest that they may be useful not only to monitor immune activation during HAART, but also to distinguish between good and poor responders. In the case of sCD14 and TGF- β 1, the levels of these biomarkers remained persistently elevated despite HAART-induced virological suppression, a finding that is consistent with ongoing monocyte-macrophage activation, underscoring a potential role for adjuvant anti-inflammatory therapy.
    Mediators of Inflammation 01/2014; 2014:198413. · 3.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD4+CD25+Foxp3+ regulatory T cells (Tregs) can inhibit cytotoxic responses. Though several studies have analyzed Treg frequency in the peripheral blood mononuclear cells (PBMCs) of pancreatic ductal adenocarcinoma (PDA) patients using flow cytometry (FCM), few studies have examined how intratumoral Tregs might contribute to immunosuppression in the tumor microenvironment. Thus, the potential role of intratumoral Tregs in PDA patients remains to be elucidated. In this study, we found that the percentages of Tregs, CD4+ T cells and CD8+ T cells were all increased significantly in tumor tissue compared to control pancreatic tissue, as assessed via FCM, whereas the percentages of these cell types in PBMCs did not differ between PDA patients and healthy volunteers. The percentages of CD8+ T cells in tumors were significantly lower than in PDA patient PBMCs. In addition, the relative numbers of CD4+CD25+Foxp3+ Tregs and CD8+ T cells were negatively correlated in the tissue of PDA patients, and the abundance of Tregs was significantly correlated with tumor differentiation. Additionally, Foxp3+ T cells were observed more frequently in juxtatumoral stroma (immediately adjacent to the tumor epithelial cells). Patients showing an increased prevalence of Foxp3+ T cells had a poorer prognosis, which was an independent factor for patient survival. These results suggest that Tregs may promote PDA progression by inhibiting the antitumor immunity of CD8+ T cells at local intratumoral sites. Moreover, a high proportion of Tregs in tumor tissues may reflect suppressed antitumor immunity.
    PLoS ONE 01/2014; 9(3):e91551. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cells (DCs) initiate adaptive immune responses to cancer cells by activating naive T lymphocytes. 6-sulfo LacNAc(+) DCs (slanDCs) represent a distinct population of circulating and tissue proinflammatory DCs, whose role in cancer immune surveillance is unknown. Herein, by screening a large set of clinical samples, we demonstrate accumulation of slanDCs in metastatic tumour-draining lymph nodes (M-TDLN) from carcinoma patients. Remarkably, slanDCs are absent at the primary carcinoma site, while their selective nodal recruitment follows the arrival of cancer cells to M-TDLN. slanDCs surround metastatic carcinoma deposits in close proximity to dead cells and efficiently phagocytose tumour cells. In colon carcinoma patients, the contingent of circulating slanDCs remains intact and competent in terms of IL-12p70 and tumour necrosis factor alpha production, induction of T-cell proliferation and migratory capacity to a set of chemokines produced in M-TDLN. We conclude that activated slanDCs represent previously unrecognized players of nodal immune responses to cancer cells.
    Nature Communications 01/2014; 5:3029. · 10.02 Impact Factor

Michael Gobert