Article

Quantitative and Functional Alterations of Plasmacytoid Dendritic Cells Contribute to Immune Tolerance in Ovarian Cancer

Departments of Medical Oncology, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Lyon, France.
Cancer Research (Impact Factor: 9.28). 06/2011; 71(16):5423-34. DOI: 10.1158/0008-5472.CAN-11-0367
Source: PubMed

ABSTRACT In ovarian cancer, the immune system fails to eradicate established tumors partly due to the induction of immune tolerance within tumor microenvironment. In this study, we investigated the contribution of plasmacytoid dendritic cells (pDC) in the establishment of immune tolerance in a cohort of 44 ovarian cancer patients. In the tumor and malignant ascites, CD4(+)CD123(+)BDCA2(+) pDC were the most abundant dendritic cell subset; however, they were profoundly depleted in peripheral blood. The presence of pDC in primary ovarian cancer, but not ascites, was an independent prognostic factor associated with early relapse. Following chemotherapy, we observed a partial restoration of blood pDC levels in patients in complete remission. These findings show preferential recruitment of pDC into tumors where they express a partially mature phenotype that may reflect an in situ activation. Importantly, compared with pDC found in ascites or blood, tumor-associated pDC (TApDC) produced less IFN-α, TNF-α, IL-6, macrophage inflammatory protein-1β, and RANTES in response to toll-like receptor stimulation, and alterations in pDC functions were mainly mediated through tumor-derived TNF-α and TGF-β. Unlike ascites-derived pDC, TApDC induced IL-10 production from allogeneic naive CD4(+) T lymphocytes, suggesting the existence of a paracrine immunosuppressive loop. Taken together, our findings indicate that both local and systemic dysfunction of pDC play a critical role in the progression of ovarian cancer via induction of immune tolerance.

0 Followers
 · 
114 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported that plasmacytoid dendritic cells (pDCs) infiltrating breast tumors are impaired for their interferon-α (IFN-α) production, resulting in local regulatory T cells amplification. We designed our study to decipher molecular mechanisms of such functional defect of tumor-associated pDC (TApDC) in breast cancer. We demonstrate that besides IFN-α, the production by Toll-like receptor (TLR)-activated healthy pDC of IFN-β and TNF-α but not IP-10/CXCL10 nor MIP1-α/CCL3 is impaired by the breast tumor environment. Importantly, we identified TGF-β and TNF-α as major soluble factors involved in TApDC functional alteration. Indeed, recombinant TGF-β1 and TNF-α synergistically blocked IFN-α production of TLR-activated pDC, and neutralization of TGF-β and TNF-α in tumor-derived supernatants restored pDCs' IFN-α production. The involvment of tumor-derived TGF-β was further confirmed in situ by the detection of phosphorylated Smad2 in the nuclei of TApDC in breast tumor tissues. Mechanisms of type I IFN inhibition did not involve TLR downregulation but the inhibition of IRF-7 expression and nuclear translocation in pDC after their exposure to tumor-derived supernatants or recombinant TGF-β1 and TNF-α. Our findings indicate that targeting TApDC to restore their IFN-α production might be an achievable strategy to induce antitumor immunity in breast cancer by combining TLR7/9-based immunotherapy with TGF-β and TNF-α antagonists.
    International Journal of Cancer 08/2013; 133(3). DOI:10.1002/ijc.28072 · 5.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vaccination with irradiated granulocyte macrophage colony-stimulating factor (GM-CSF)-transduced autologous tumor cells (GVAX) has been shown to induce therapeutic antitumor immunity. However, its effectiveness is limited. We therefore attempted to improve the antitumor effect by identifying little-known key pathways in GM-CSF-sensitized dendritic cells (GM-DC) in tumor-draining lymph nodes (TDLN). We initially confirmed that syngeneic mice subcutaneously injected with poorly immunogenic Lewis lung carcinoma (LLC) cells transduced with Sendai virus encoding GM-CSF (LLC/SeV/GM) remarkably rejected the tumor growth. Using cDNA microarrays, we found that expression levels of type I interferon (IFN)-related genes, predominantly expressed in plasmacytoid DCs (pDC), were significantly upregulated in TDLN-derived GM-DCs and focused on pDCs. Indeed, mouse experiments demonstrated that the effective induction of GM-CSF-induced antitumor immunity observed in immunocompetent mice treated with LLC/SeV/GM cells was significantly attenuated when pDC-depleted or IFNα receptor knockout (IFNAR(-/-)) mice were used. Importantly, in both LLC and CT26 colon cancer-bearing mice, the combinational use of imiquimod with autologous GVAX therapy overcame the refractoriness to GVAX monotherapy accompanied by tolerability. Mechanistically, mice treated with the combined vaccination displayed increased expression levels of CD86, CD9, and Siglec-H, which correlate with an antitumor phenotype, in pDCs, but decreased the ratio of CD4(+)CD25(+)FoxP3(+) regulatory T cells in TDLNs. Collectively, these findings indicate that the additional use of imiquimod to activate pDCs with type I IFN production, as a positive regulator of T-cell priming, could enhance the immunologic antitumor effects of GVAX therapy, shedding promising light on the understanding and treatment of GM-CSF-based cancer immunotherapy. Cancer Immunol Res; 2(6); 1-13. ©2014 AACR.
    04/2014; 2(6). DOI:10.1158/2326-6066.CIR-13-0143
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plasmacytoid dendritic cells (pDCs) rapidly and massively produce type I interferon and other inflammatory cytokines in response to foreign nucleic acids, thereby indirectly influencing adaptive T cell responses. Moreover, pDCs present Ag to naïve T cells and directly regulate T cell differentiation. Depending on the immune environment, pDCs exhibit either tolerogenic or immunogenic properties. Here we show that CpG-activated pDCs promote efficient Th17 differentiation. Indeed, Th17 responses are defective in mice selectively lacking MHCII on pDCs upon antigenic challenge. Importantly, in those mice, the frequency of Th17 cells infiltrating solid tumors is impaired. As a result, the recruitment of infiltrating leukocytes in tumors, including tumor-specific CTLs, is altered and results in increased tumor growth. Importantly, following immunization with tumor Ag and CpG-B, MHCII-restricted Ag presentation by pDCs promotes the differentiation of anti-tumor Th17 cells that induce intratumor CTL recruitment, and subsequent regression of established tumors. Our results highlight a new role for Ag presenting activated pDCs in promoting the development of Th17 cells and impacting on anti-tumor immunity.
    Cancer Research 09/2014; 74(22). DOI:10.1158/0008-5472.CAN-14-1149 · 9.28 Impact Factor

Michael Gobert