A role for Notch signaling in trophoblast endovascular invasion and in the pathogenesis of pre-eclampsia

Center for Reproductive Sciences, University of California-San Francisco, CA 94143, USA.
Development (Impact Factor: 6.27). 07/2011; 138(14):2987-98. DOI: 10.1242/dev.066589
Source: PubMed

ABSTRACT Placental trophoblasts (TBs) invade and remodel uterine vessels with an arterial bias. This process, which involves vascular mimicry, re-routes maternal blood to the placenta, but fails in pre-eclampsia. We investigated Notch family members in both contexts, as they play important roles in arterial differentiation/function. Immunoanalyses of tissue sections showed step-wise modulation of Notch receptors/ligands during human TB invasion. Inhibition of Notch signaling reduced invasion of cultured human TBs and expression of the arterial marker EFNB2. In mouse placentas, Notch activity was highest in endovascular TBs. Conditional deletion of Notch2, the only receptor upregulated during mouse TB invasion, reduced arterial invasion, the size of maternal blood canals by 30-40% and placental perfusion by 23%. By E11.5, there was litter-wide lethality in proportion to the number of mutant offspring. In pre-eclampsia, expression of the Notch ligand JAG1 was absent in perivascular and endovascular TBs. We conclude that Notch signaling is crucial for TB vascular invasion.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) have recently become essential actors in various fields of physiology and medicine, especially as easily accessible circulating biomarkers, or as modulators of cell differentiation. To this respect, terminal differentiation of trophoblasts (the characteristic cells of the placenta in Therian mammals) into syncytiotrophoblast, villous trophoblast, or extravillous trophoblast constitutes a good example of such a choice, where miRNAs have recently been shown to play an important role. The aim of this review is to provide a snapshot of what is known today in placentation mechanisms that are mediated by miRNA, under the angles of materno-fetal immune dialog regulation, trophoblast differentiation, and angiogenesis at the materno-fetal interface. Also, two aspects of regulation of these issues will be highlighted: the part played by oxygen concentration and the specific function of imprinted genes in the developing placenta.
    Frontiers in Genetics 11/2013; 4:248. DOI:10.3389/fgene.2013.00248
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: TLE3 is a transcriptional co-repressor that interacts with several DNA-binding repressors, including downstream effectors of the Notch signaling pathway. We generated Tle3-deficient mice and found that they die in utero and their death is associated with abnormal development of the placenta with major defects in the maternal vasculature. In the normal placenta, maternal blood spaces are lined, not as usual in the mammalian circulation by endothelial cells, but rather by specialized embryo-derived cells of the trophoblast cell lineage named trophoblast giant cells (TGC). Tle3 mRNA is expressed in those highly specialized TGC and Tle3 mutants show severe defects in differentiation of TGC-lined channels and lacunar spaces that take blood out of the labyrinth zone of the placenta and into the uterine veins. The mutants also show somewhat milder defects on the arterial-side of the maternal vascular circuit in spiral arteries and canals that take blood into the labyrinth. Notch2 and Tle3 expression patterns overlap in several TGC subtypes and we found that Tle3 and Notch2 mutants have some overlapping features. However, they also show differences implying that TLE3 may mediate some but not all of the effects of Notch2 signaling during placenta development. Therefore, formation of the different types of maternal blood spaces by different TGC subtypes is regulated by distinct molecular mechanisms.
    Developmental Biology 08/2013; 382(1). DOI:10.1016/j.ydbio.2013.08.005 · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Notch signaling is involved in cell lineage specification in many developing organs. In mice there are four known Notch receptor genes (Notch1-4) and five ligands genes (Dll1, 3, 4 and Jagged1 and 2). Notch2 is essential for development of placenta, an organ that mediates feto-maternal nutrient and gas exchange as well as maternal adaptations to pregnancy. However the role of other Notch receptors and ligands in placentation is not known. In order to gain better insight into the role of Notch signaling in mouse placenta we thoroughly analyzed mRNA expression of all Notch receptors and ligands in all trophoblast cell types from the embryonic day (E) 7.5 to E12.5, the period during which all of the substructures of the placenta develop. Here we show that Notch receptors and ligands are specifically and dynamically expressed in multiple cell layers of developing placenta. We found that the Notch2 receptor and Jagged1 and Jagged2 ligand genes are complementarily expressed in trophoblast cells of the chorion and its later derivatives in the labyrinth. Dll4 and Notch2 expression complement each other in the ectoplacental cone, while Dll1 and Notch2 are expressed in an ectoplacental cone derivative, the junctional zone. Moreover Dll4 and Notch2 are expressed at the ectoplacental cone - decidua interface at early stages of placentation. Additionally we show that Notch2 is dynamically expressed in all trophoblast giant cell subtypes, which is consistent with previous reports. Overall these expression pattern results suggest that Notch signaling may play several diverse roles during placenta development.
    Gene Expression Patterns 05/2013; 34(9). DOI:10.1016/j.gep.2013.04.006 · 1.36 Impact Factor