Article

Neurotrophin-mediated dendrite-to-nucleus signaling revealed by microfluidic compartmentalization of dendrites.

Department of Pharmacology, Weill Medical College Cornell University, New York, NY 10065, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 06/2011; 108(27):11246-51. DOI: 10.1073/pnas.1012401108
Source: PubMed

ABSTRACT Signaling from dendritic synapses to the nucleus regulates important aspects of neuronal function, including synaptic plasticity. The neurotrophin brain-derived neurotrophic factor (BDNF) can induce long-lasting strengthening of synapses in vivo and this effect is dependent on transcription. However, the mechanism of signaling to the nucleus is not well understood. Here we describe a microfluidic culture device to investigate dendrite-to-nucleus signaling. Using these microfluidic devices, we demonstrate that BDNF can act directly on dendrites to elicit an anterograde signal that induces transcription of the immediate early genes, Arc and c-Fos. Induction of Arc is dependent on dendrite- and cell body-derived calcium, whereas induction of c-Fos is calcium-independent. In contrast to retrograde neurotrophin-mediated axon-to-nucleus signaling, which is MEK5-dependent, BDNF-mediated anterograde dendrite-to-nucleus signaling is dependent on MEK1/2. Intriguingly, the activity of TrkB, the BDNF receptor, is required in the cell body for the induction of Arc and c-Fos mediated by dendritically applied BDNF. These results are consistent with the involvement of a signaling endosome-like pathway that conveys BDNF signals from the dendrite to the nucleus.

Download full-text

Full-text

Available from: Hyung Joon Kim, Jun 02, 2015
2 Followers
 · 
83 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain-derived neurotrophic factor (BDNF) is an important regulator of synaptic transmission and long-term potentiation (LTP) in the hippocampus and in other brain regions, playing a role in the formation of certain forms of memory. The effects of BDNF in LTP are mediated by TrkB (tropomyosin-related kinase B) receptors, which are known to be coupled to the activation of the Ras/ERK, phosphatidylinositol 3-kinase/Akt and phospholipase C-γ (PLC-γ) pathways. The role of BDNF in LTP is best studied in the hippocampus, where the neurotrophin is thought to act at pre- and post-synaptic levels. Recent studies have shown that BDNF regulates the transport of mRNAs along dendrites and their translation at the synapse, by modulating the initiation and elongation phases of protein synthesis, and by acting on specific miRNAs. Furthermore, the effect of BDNF on transcription regulation may further contribute to long-term changes in the synaptic proteome. In this review we discuss the recent progress in understanding the mechanisms contributing to the short- and long-term regulation of the synaptic proteome by BDNF, and the role in synaptic plasticity, which is likely to influence learning and memory formation.
    Neuropharmacology 04/2013; 76. DOI:10.1016/j.neuropharm.2013.04.005 · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A microfluidic chip for culturing neurons and spatially isolating axons from somas is presented for use with visually guided whole-cell electrophysiological measurements. A modular design consisting of detachable and re-sealable layers is used to satisfy the requirements of both long-term neuron culturing as well as electrophysiological measurements. Whole cell patch clamp recordings indicate functional viability of neurons with isolated axons. Fluidic isolation was used to achieve asymmetric lentiviral infection of neurons on a single side reservoir. Neurons were asymmetrically infected with lentiviruses expressing the light-activated cationic channel channelrhodopsin-2. Light-evoked excitatory postsynaptic responses were detected by whole cell recordings of neurons on the uninfected side showing functional synaptic connectivity between the two isolated but axonally connected sides of the device.
    Journal of neuroscience methods 10/2012; 212(2). DOI:10.1016/j.jneumeth.2012.10.013 · 1.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chondroitin sulfate proteoglycans (CSPGs) are a major component of the glial scar that contributes to the limited regeneration of the CNS after axonal injury. However, the intracellular mechanisms that mediate the effects of CSPGs are not fully understood. Here we show that axonal growth inhibition mediated by CSPGs requires intra-axonal protein synthesis. Application of CSPGs to postnatal rat dorsal root ganglia axons results in an increase in the axonal levels of phosphorylated 4E-BP1, a marker of increased protein translation. Axons grown in media containing CSPGs exhibit markedly reduced growth rates, which can be restored by the selective application of protein synthesis inhibitors to distal axons. We show that these axons contain transcripts encoding RhoA, a regulator of the cytoskeleton that is commonly used by the signaling pathways activated by many inhibitors of axon growth. We also show that selective application of CSPGs to axons results in increased intra-axonal synthesis of RhoA and that depletion of RhoA transcripts from axons results in enhanced growth of axons in the presence of CSPGs. These data identify local translation as an effector pathway of CSPGs and demonstrate that local translation of RhoA contributes to the axon growth inhibitory effect of CSPGs.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 10/2012; 32(41):14442-7. DOI:10.1523/JNEUROSCI.0176-12.2012 · 6.75 Impact Factor