Glial D-serine gates NMDA receptors at excitatory synapses in prefrontal cortex.

Institut National de la Santé et de la Recherche Médicale U862, Neurocentre Magendie, 33077 Bordeaux, France.
Cerebral Cortex (Impact Factor: 6.83). 06/2011; 22(3):595-606. DOI: 10.1093/cercor/bhr130
Source: PubMed

ABSTRACT N-methyl-D-aspartate receptors (NMDARs) subserve numerous neurophysiological and neuropathological processes in the cerebral cortex. Their activation requires the binding of glutamate and also of a coagonist. Whereas glycine and D-serine (D-ser) are candidates for such a role at central synapses, the nature of the coagonist in cerebral cortex remains unknown. We first show that the glycine-binding site of NMDARs is not saturated in acute slices preparations of medial prefrontal cortex (mPFC). Using enzymes that selectively degrade either D-ser or glycine, we demonstrate that under the present conditions, D-ser is the principle endogenous coagonist of synaptic NMDARs at mature excitatory synapses in layers V/VI of mPFC where it is essential for long-term potentiation (LTP) induction. Furthermore, blocking the activity of glia with the metabolic inhibitor, fluoroacetate, impairs NMDAR-mediated synaptic transmission and prevents LTP induction by reducing the extracellular levels of D-serine. Such deficits can be restored by exogenous D-ser, indicating that the D-amino acid mainly originates from glia in the mPFC, as further confirmed by double-immunostaining studies for D-ser and anti-glial fibrillary acidic protein. Our findings suggest that D-ser modulates neuronal networks in the cerebral cortex by gating the activity of NMDARs and that altering its levels is relevant to the induction and potentially treatment of psychiatric and neurological disorders.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Presynaptic NMDA receptors facilitate the release of glutamate at excitatory cortical synapses and are involved in regulation of synaptic dynamics and plasticity. At synapses in the entorhinal cortex these receptors are tonically activated and provide a positive feedback modulation of the level of background excitation. NMDA receptor activation requires obligatory occupation of a co-agonist binding site, and in the present investigation we have examined whether this site on the presynaptic receptor is activated by endogenous glycine or D-serine. We used whole-cell patch clamp recordings of spontaneous AMPA receptor-mediated synaptic currents from rat entorhinal cortex neurones in vitro as a monitor of presynaptic glutamate release. Addition of exogenous glycine or D-serine had minimal effects on spontaneous release, suggesting that the co-agonist site was endogenously activated and likely to be saturated in our slices. This was supported by the observation that a co-agonist site antagonist reduced the frequency of spontaneous currents. Depletion of endogenous glycine by enzymatic breakdown with a bacterial glycine oxidase had little effect on glutamate release, whereas D-serine depletion with a yeast D-amino acid oxidase significantly reduced glutamate release, suggesting that D-serine is the endogenous agonist. Finally, the effects of D-serine depletion were mimicked by compromising astroglial cell function, and this was rescued by exogenous D-serine, indicating that astroglial cells are the provider of the D-serine that tonically activates the presynaptic NMDA receptor. We discuss the significance of these observations for the aetiology of epilepsy and possible targeting of the presynaptic NMDA receptor in anticonvulsant therapy.
    Neuropharmacology 04/2014; · 4.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The identification of the presence of active signaling between astrocytes and neurons in a process termed gliotransmission has caused a paradigm shift in our thinking about brain function. However, we are still in the early days of the conceptualization of how astrocytes influence synapses, neurons, networks, and ultimately behavior. In this Perspective, our goal is to identify emerging principles governing gliotransmission and consider the specific properties of this process that endow the astrocyte with unique functions in brain signal integration. We develop and present hypotheses aimed at reconciling confounding reports and define open questions to provide a conceptual framework for future studies. We propose that astrocytes mainly signal through high-affinity slowly desensitizing receptors to modulate neurons and perform integration in spatiotemporal domains complementary to those of neurons.
    Neuron 02/2014; 81(4):728-739. · 15.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia is a complex and multifactorial disorder generally diagnosed in young adults at the time of the first psychotic episode of delusions and hallucinations. These positive symptoms can be controlled in most patients by currently-available antipsychotics. Conversely, they are poorly effective against concomitant neurocognitive dysfunction, deficits in social cognition and negative symptoms (NS), which strongly contribute to poor functional outcome. The precise notion of NS has evolved over the past century, with recent studies - underpinned by novel rating methods - suggesting two major sub-domains: "decreased emotional expression", incorporating blunted affect and poverty of speech, and "avolition", which embraces amotivation, asociality and "anhedonia" (inability to anticipate pleasure). Recent studies implicate a dysfunction of frontocortico-temporal networks in the aetiology of NS, together with a disruption of cortico-striatal circuits, though other structures are also involved, like the insular and parietal cortices, amygdala and thalamus. At the cellular level, a disruption of GABAergic-glutamatergic balance, dopaminergic signalling and, possibly, oxytocinergic and cannibinoidergic transmission may be involved. Several agents are currently under clinical investigation for the potentially improved control of NS, including oxytocin itself, N-Methyl-d-Aspartate receptor modulators and minocycline. Further, magnetic-electrical "stimulation" strategies to recruit cortical circuits and "cognitive-behavioural-psychosocial" therapies likewise hold promise. To acquire novel insights into the causes and treatment of NS, experimental study is crucial, and opportunities are emerging for improved genetic, pharmacological and developmental modelling, together with more refined readouts related to deficits in reward, sociality and "expression". The present article comprises an integrative overview of the above issues as a platform for this Special Issue of European Neuropsychopharmacology in which five clinical and five preclinical articles treat individual themes in greater detail. This Volume provides, then, a framework for progress in the understanding - and ultimately control - of the debilitating NS of schizophrenia.
    European neuropsychopharmacology: the journal of the European College of Neuropsychopharmacology 05/2014; 24(5):645-92. · 3.68 Impact Factor


Available from
Jun 2, 2014