Measuring naturally acquired immune responses to candidate malaria vaccine antigens in Ghanaian adults.

Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.
Malaria Journal (Impact Factor: 3.49). 06/2011; 10:168. DOI: 10.1186/1475-2875-10-168
Source: PubMed

ABSTRACT To prepare field sites for malaria vaccine trials, it is important to determine baseline antibody and T cell responses to candidate malaria vaccine antigens. Assessing T cell responses is especially challenging, given genetic restriction, low responses observed in endemic areas, their variability over time, potential suppression by parasitaemia and the intrinsic variability of the assays.
In Part A of this study, antibody titres were measured in adults from urban and rural communities in Ghana to recombinant Plasmodium falciparum CSP, SSP2/TRAP, LSA1, EXP1, MSP1, MSP3 and EBA175 by ELISA, and to sporozoites and infected erythrocytes by IFA. Positive ELISA responses were determined using two methods. T cell responses to defined CD8 or CD4 T cell epitopes from CSP, SSP2/TRAP, LSA1 and EXP1 were measured by ex vivo IFN-γ ELISpot assays using HLA-matched Class I- and DR-restricted synthetic peptides. In Part B, the reproducibility of the ELISpot assay to CSP and AMA1 was measured by repeating assays of individual samples using peptide pools and low, medium or high stringency criteria for defining positive responses, and by comparing samples collected two weeks apart.
In Part A, positive antibody responses varied widely from 17%-100%, according to the antigen and statistical method, with blood stage antigens showing more frequent and higher magnitude responses. ELISA titres were higher in rural subjects, while IFA titres and the frequencies and magnitudes of ex vivo ELISpot activities were similar in both communities. DR-restricted peptides showed stronger responses than Class I-restricted peptides. In Part B, the most stringent statistical criteria gave the fewest, and the least stringent the most positive responses, with reproducibility slightly higher using the least stringent method when assays were repeated. Results varied significantly between the two-week time-points for many participants.
All participants were positive for at least one malaria protein by ELISA, with results dependent on the criteria for positivity. Likewise, ELISpot responses varied among participants, but were relatively reproducible by the three methods tested, especially the least stringent, when assays were repeated. However, results often differed between samples taken two weeks apart, indicating significant biological variability over short intervals.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Background. Tools that estimate recent and long-term malaria transmission in a population would be highly useful for malaria elimination programs.Methods. The prevalence of antibodies to 11 P. falciparum antigens was assessed by cytometric bead assay or ELISA in 1,000 people in a highland area of Kenya over 14 months, during a period of interrupted malaria transmission.Results. Antibodies differed by antigen in acquisition with age: rapid (>80% antibody positive by age 20 years, 5 antigens), moderate (>40% positive by age 20 years, 3 antigens), or slow (<40% positive by age 20 years, 3 antigens). Antibody seroreversion rates in the 14 months between samples decreased with age rapidly (7 antigens), slowly (3 antigens), or remained high at all ages (schizont extract). Estimated antibody half-lives in individuals >10 years of age were long (40 to >80 years) for 5 antigens, moderate (5 - 20 years) for 3 antigens, and short (<1 year) for 3 antigens.Conclusions. Antibodies to P. falciparum antigens in malaria endemic areas vary by age, antigen, and time since last exposure to P. falciparum. Multiplex P. falciparum antibody testing could provide estimates of long-term and recent malaria transmission and potentially of a population's susceptibility to future clinical malaria.
    The Journal of Infectious Diseases 04/2014; · 5.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BackgroundA malaria vaccine that targets the sporozoite/liver stage parasites could potentially prevent blood stage infection and the associated clinical symptoms. Identification of sporozoite/liver stage antigens is, therefore, crucial for the development of effective vaccines. Cell-traversal protein for ookinetes and sporozoites (CelTOS) is a highly conserved antigen involved in sporozoite motility and hepatocyte invasion and has been shown to induce significant IFN-¿ production in PBMCs from radiation-attenuated sporozoite-immunized malaria-naïve individuals. The aim of this study was to ascertain whether such CelTOS-specific recall responses are also induced in individuals with natural exposure to Plasmodium falciparum.Methods Ex vivo IFN-¿ responses to 15mer overlapping peptide pools covering the entire sequence of CelTOS and five other candidate antigens, CSP, AMA1, MSP1, TRAP and LSA1, were characterized using PBMCs from 35 malaria exposed adults. Responses to four CelTOS peptide pools (CelTp1, CelTp2, CelTp3 and CelTp4), a pool containing peptides from the entire CelTOS antigen (CelTTp), and pools comprised of overlapping peptides from each of the other five malaria antigens were assessed by ex vivo ELISpot assay. A positive IFN-¿ response for stimulants was defined by two criteria; a stimulation index of two or greater relative to the unstimulated control, and a difference of 10 or greater in spot forming cells between stimulant and the unstimulated control.ResultsOf the 35 volunteers tested, five had positive IFN-¿ recall responses against the four different CelTOS pools while four volunteers made responses against the CelTTp pool; six volunteers were, therefore, positive with CelTOS. By contrast, six volunteers responded to AMA1, seven to LSA1, 15 to MSP1 and two volunteers responded against CSP and TRAP.Conclusions These results suggest natural malaria transmission induces CelTOS-specific ex vivo IFN-¿ in Ghanaian adults and that the frequency of these responses was similar to those of other previously characterized malaria antigens. These findings support the further evaluation of CelTOS as a pre-erythrocytic candidate antigen for inclusion in a potential multi-antigen vaccine.
    Malaria Journal 01/2015; 14(1):20. · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasmodium vivax is the world's most widely distributed malaria parasite and a potential cause of morbidity and mortality for approximately 2.85 billion people living mainly in Southeast Asia and Latin America. Despite this dramatic burden, very few vaccines have been assessed in humans. The clinically relevant vectors modified vaccinia virus Ankara (MVA) and the chimpanzee adenovirus ChAd63 are promising delivery systems for malaria vaccines due to their safety profiles and proven ability to induce protective immune responses against Plasmodium falciparum thrombospondin-related anonymous protein (TRAP) in clinical trials. Here, we describe the development of new recombinant ChAd63 and MVA vectors expressing P. vivax TRAP (PvTRAP) and show their ability to induce high antibody titers and T cell responses in mice. In addition, we report a novel way of assessing the efficacy of new candidate vaccines against P. vivax using a fully infectious transgenic Plasmodium berghei parasite expressing P. vivax TRAP to allow studies of vaccine efficacy and protective mechanisms in rodents. Using this model, we found that both CD8+ T cells and antibodies mediated protection against malaria using virus-vectored vaccines. Our data indicate that ChAd63 and MVA expressing PvTRAP are good preerythrocytic-stage vaccine candidates with potential for future clinical application. FOOTNOTES Received 15 October 2013. Returned for modification 8 November 2013. Accepted 23 December 2013. Address correspondence to Arturo Reyes-Sandoval, arturo.reyes{at} Published ahead of print 30 December 2013 Supplemental material for this article may be found at Copyright © 2014 Bauza et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license.
    Infection and immunity 03/2014; 82(3). · 4.16 Impact Factor

Preview (3 Sources)

1 Download
Available from