Human Urinary Bladder Strip Relaxation by the β-Adrenoceptor Agonist Isoprenaline: Methodological Considerations and Effects of Gender and Age.

Departments of Urology and Medicine, University of Duisburg-Essen Essen, Germany.
Frontiers in Pharmacology 01/2011; 2:11. DOI: 10.3389/fphar.2011.00011
Source: PubMed

ABSTRACT The present study was primarily designed to explore various methodological aspects related to organ bath experiments evaluating human detrusor relaxation by the β-adrenoceptor agonist isoprenaline. Data are based upon a series of 30 consecutive patients, and this cohort was also used to explore possible effects of gender and age. KCl-induced contraction was related to strip length but not weight or cross-sectional area, indicating that the former is most suitable for data normalization. Storage of detrusor strips in cold buffer for up to 2 days did not affect contractile responses to KCl or efficacy of isoprenaline to cause relaxation but significantly affected the isoprenaline potency. No such alterations were observed with up to 1 day of cold storage. The type (KCl vs. passive tension) or strength of contractile stimulus had only minor effects on isoprenaline responses although these differences reached statistical significance in some cases. Similarly, gender and age had only minor if any effects on KCl-induced contraction or isoprenaline-induced relaxation, but the current data are too limited for robust conclusions. In summary we have evaluated experimental conditions for the testing of human detrusor strip contraction and relaxation which should be useful for future larger studies.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A high incidence of lower urinary tract disorders is associated with ageing. By comparing the senescent-accelerated mouse prone (SAMP8) model with the senescent-accelerated mouse resistant (SAMR1) strain, we investigated smooth muscle contractility in responses to intrinsic neurotransmitters, both in the bladder and urethra. We analysed micturition frequency, the changes in muscle tension induced by electrical field stimulation or agonist administration, the density of nerves (adrenergic, cholinergic and nitrergic) and interstitial cells (ICs), as well as cGMP accumulation in bladder and urethral preparations. Senescent mice displayed increased micturition frequency and excitatory contractility of neurogenic origin in the bladder. While cholinergic nerve density remained unchanged, there was a mild sensitization to ACh in male mice. Potentiation in the detrusor may be also provoked by the stronger contribution of ATP, together with reduced adrenergic innervation in males and cyclo-oxygenase derived prostanoid production in females. The greater excitatory contractility in the urethra was probably due to the sensitization to noradrenaline, in conjunction with attenuated nitrergic relaxation. There were also fewer neuronal nitric oxide synthase immunoreactive (ir) nerves and vimentin-positive ICs, although the sidenafil- and diethylamine-NONOate-induced relaxations and cGMP-ir remained unchanged. Premature senescent mice exhibit bladder and urethral hyperexcitability, coupled with reduced urethral relaxation of neurogenic origin, which could reflect the impaired urinary function in the elderly. We propose that senescence-accelerated mice provide a useful tool to analyse the basic mechanisms of age related changes in bladder and urethral function.
    British Journal of Pharmacology 12/2013; · 5.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activation of β3-adrenoceptors has been shown to have a direct relaxant effect on urinary bladder smooth muscle from both rats and humans, however there are very few studies investigating the effects of β3-adrenoceptor agonists on nerve-evoked bladder contractions. Therefore in the current study, the role of β3-adrenoceptors in modulating efferent neurotransmission was evaluated. The effects of β3-adrenoceptor agonism on neurogenic contractions induced by electrical field stimulation (EFS) were compared with effects on contractions induced by exogenous acetylcholine (Ach) and αβ-methylene adenosine triphosphate (αβ-meATP) in order to determine the site of action. Isoproterenol inhibited EFS-induced neurogenic contractions of human bladder (pD2=6.79; Emax=65%). The effect of isoproterenol was selectively inhibited by the β3-adrenoceptor antagonist L-748,337 (pKB=7.34). Contractions induced by exogenous Ach (0.5-1μM) were inhibited 25% by isoproterenol (3μM) while contractions to 10Hz in the same strip were inhibited 67%. The selective β3-adrenoceptor agonist CL-316,243 inhibited EFS-induced neurogenic contractions of rat bladder (pD2=7.83; Emax=65%). The effects of CL-316,243 were inhibited in a concentration dependent manner by L-748,337 (pA2=6.42). Contractions induced by exogenous Ach and αβ-meATP were significantly inhibited by CL-316,243, 29% and 40%, respectively. These results demonstrate that the activation of β3-adrenoceptors inhibits neurogenic contractions of both rat and human urinary bladder. Contractions induced by exogenously applied parasympathetic neurotransmitters are also inhibited by β3-agonism however the effect is clearly less than on neurogenic contractions (particularly in human), suggesting that in addition to a direct effect on smooth muscle, activation of prejunctional β3-adrenoceptors may inhibit neurotransmitter release.
    Pharmacological Research 12/2013; · 3.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sexual dimorphism is not only noticed in the prevalence of many diseases, but also in multiple physiological functions in the body. This review has summarized findings from published literature on the sex differences of the pathophysiology and pharmacology of the lower urinary tract (LUT) of humans and animals. Sex differences have been found in several key areas of the LUT, such as overactive bladder, expression and function of neurotransmitter receptors in the bladder and urethra, and micturition patterns in humans and animals. It is anticipated that this review will not only evoke renewed interest for further research on the mechanism of sex differences in the pathophysiology of the LUT (especially for overactive bladder), but might also open up the possibilities for gender-based drug development by pharmaceutical industries in order to find separate cures for men and women with diseases of the LUT.
    Current Urology 02/2013; 6(4):179-188.

Full-text (2 Sources)

Available from
May 31, 2014