Article

Task-Specific Modulation of Human Auditory Evoked Response in a Delayed-Match-To-Sample Task

Brain Imaging and Modeling Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health Bethesda, MD, USA.
Frontiers in Psychology (Impact Factor: 2.8). 05/2011; 2:85. DOI: 10.3389/fpsyg.2011.00085
Source: PubMed

ABSTRACT In this study, we focus our investigation on task-specific cognitive modulation of early cortical auditory processing in human cerebral cortex. During the experiments, we acquired whole-head magnetoencephalography data while participants were performing an auditory delayed-match-to-sample (DMS) task and associated control tasks. Using a spatial filtering beamformer technique to simultaneously estimate multiple source activities inside the human brain, we observed a significant DMS-specific suppression of the auditory evoked response to the second stimulus in a sound pair, with the center of the effect being located in the vicinity of the left auditory cortex. For the right auditory cortex, a non-invariant suppression effect was observed in both DMS and control tasks. Furthermore, analysis of coherence revealed a beta band (12∼20 Hz) DMS-specific enhanced functional interaction between the sources in left auditory cortex and those in left inferior frontal gyrus, which has been shown to be involved in short-term memory processing during the delay period of DMS task. Our findings support the view that early evoked cortical responses to incoming acoustic stimuli can be modulated by task-specific cognitive functions by means of frontal-temporal functional interactions.

0 Followers
 · 
113 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, there have been a large number of studies using resting state fMRI to characterize abnormal brain connectivity in patients with a variety of neurological, psychiatric, and developmental disorders. However, interpreting what the differences in resting state fMRI functional connectivity (rsfMRI-FC) actually reflect in terms of the underlying neural pathology has proved to be elusive because of the complexity of brain anatomical connectivity. The same is the case for task-based fMRI studies. In the last few years, several groups have used large-scale neural modeling to help provide some insight into the relationship between brain anatomical connectivity and the corresponding patterns of fMRI-FC. In this paper we review several efforts at using large-scale neural modeling to investigate the relationship between structural connectivity and functional/effective connectivity to determine how alterations in structural connectivity are manifested in altered patterns of functional/effective connectivity. Because the alterations made in the anatomical connectivity between specific brain regions in the model are known in detail, one can use the results of these simulations to determine the corresponding alterations in rsfMRI-FC. Many of these simulation studies found that structural connectivity changes do not necessarily result in matching changes in functional/effective connectivity in the areas of structural modification. Often, it was observed that increases in functional/effective connectivity in the altered brain did not necessarily correspond to increases in the strength of the anatomical connection weights. Note that increases in rsfMRI-FC in patients have been interpreted in some cases as resulting from neural plasticity. These results suggest that this interpretation can be mistaken. The relevance of these simulation findings to the use of functional/effective fMRI connectivity as biomarkers for brain disorders is also discussed.
    Frontiers in Human Neuroscience 11/2013; 7:649. DOI:10.3389/fnhum.2013.00649 · 2.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Single-trial encounters with multisensory stimuli affect both memory performance and early-latency brain responses to visual stimuli. Whether and how auditory cortices support memory processes based on single-trial multisensory learning is unknown and may differ qualitatively and quantitatively from comparable processes within visual cortices due to purported differences in memory capacities across the senses. We recorded event-related potentials (ERPs) as healthy adults (n = 18) performed a continuous recognition task in the auditory modality, discriminating initial (new) from repeated (old) sounds of environmental objects. Initial presentations were either unisensory or multisensory; the latter entailed synchronous presentation of a semantically congruent or a meaningless image. Repeated presentations were exclusively auditory, thus differing only according to the context in which the sound was initially encountered. Discrimination abilities (indexed by d') were increased for repeated sounds that were initially encountered with a semantically congruent image versus sounds initially encountered with either a meaningless or no image. Analyses of ERPs within an electrical neuroimaging framework revealed that early stages of auditory processing of repeated sounds were affected by prior single-trial multisensory contexts. These effects followed from significantly reduced activity within a distributed network, including the right superior temporal cortex, suggesting an inverse relationship between brain activity and behavioural outcome on this task. The present findings demonstrate how auditory cortices contribute to long-term effects of multisensory experiences on auditory object discrimination. We propose a new framework for the efficacy of multisensory processes to impact both current multisensory stimulus processing and unisensory discrimination abilities later in time. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
    European Journal of Neuroscience 03/2015; DOI:10.1111/ejn.12804 · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: How does the multi-sensory nature of stimuli influence information processing? Cognitive systems with limited selective attention can elucidate these processes. Six-year-olds, 11-yearolds and 20-year-olds engaged in a visual search task that required them to detect a pre-defined colored shape under conditions of low or high visual perceptual load. On each trial, a peripheral distractor that could be either compatible or incompatible with the current target color was presented either visually, auditorily or audiovisually. Unlike unimodal distractors, audiovisual distractors elicited reliable compatibility effects across the two levels of load in adults and in the older children, but high visual load significantly reduced distraction for all children, especially the youngest participants. This study provides the first demonstration that multi- sensory distraction has powerful effects on selective attention: Adults and older children alike allocate attention to potentially relevant information across multiple senses. However, poorer attentional resources can, paradoxically, shield the youngest children from the deleterious effects of multisensory distraction. Furthermore, we highlight how developmental research can enrich the understanding of distinct mechanisms controlling adult selective attention in multi-sensory environments.
    Cognition 03/2015; 136:156-165. DOI:10.1016/j.cognition.2014.11.031 · 3.63 Impact Factor

Full-text (3 Sources)

Download
73 Downloads
Available from
May 20, 2014