SPARC functions as an anti-stress factor by inactivating p53 through Akt-mediated MDM2 phosphorylation to promote melanoma cell survival.

INSERM, U895, Centre Méditerranéen de Médecine Moléculaire, Biology and Pathologies of Melanocytes, Nice, France.
Oncogene (Impact Factor: 7.36). 06/2011; 30(49):4887-900. DOI:10.1038/onc.2011.198
Source: PubMed

ABSTRACT Aberrant expression of Secreted Protein Acidic and Rich in Cysteine (SPARC)/osteonectin has been associated with an invasive tumor cell phenotype and poor outcome in human melanomas. Although it is known that SPARC controls melanoma tumorigenesis, the precise role of SPARC in melanoma cell survival is still unclear. Here, we show that SPARC has a cell-autonomous survival activity, which requires Akt-dependent regulation of p53. Suppression of SPARC by RNA interference in several human melanoma cells and xenografted A375 tumors triggers apoptotic cell death through the mitochondrial intrinsic pathway and activation of caspase-3. Cell death induced by depletion of SPARC is dependent on p53 and induction of Bax, and results in the generation of ROS. Stabilization of p53 in SPARC-depleted cells is associated with a decrease in Akt-mediated activating phosphorylation of MDM2. Inhibition of Akt signaling pathway is important for the observed changes as overexpression of constitutively active Akt protects cells against apoptosis induced by SPARC depletion. Conversely, increased expression of SPARC stimulates Akt and MDM2 phosphorylation, thus facilitating p53 degradation. Finally, we show that overexpression of SPARC renders cells more resistant to the p53-mediated cytotoxic effects of the DNA-damaging drug actinomycin-D. Our study indicates that SPARC functions through activation of Akt and MDM2 to limit p53 levels and that acquired expression of SPARC during melanoma development would confer survival advantages through suppression of p53-dependent apoptotic pathways.

0 0
  • [show abstract] [hide abstract]
    ABSTRACT: Endothelin-3 (ET-3) is aberrantly expressed in both metastatic melanoma tissues and cultured melanoma cells. Our previous work showed that ET-3 could promote survival of metastatic melanoma cells via its altered expression. In this study, we investigated the mechanisms responsible for these gene-induced phenotypes in melanoma cells. An ET-3 gene sequence-specific shRNA vector pLVTHM-ET3-RNAi was constructed and transfected into human malignant melanoma cells A375 and MMRU, and the resultant molecular events and cellular changes were examined. As compared with the empty-vector group, cell proliferation was slowed down, and the growth inhibition rates were 38.9% in A375 cells and 38.4% in MMRU cells after transfection. In addition, cell invasion capability was also inhibited, with a reduction of 62.2% in A375 cells and 54.3% in MMRU cells. The percentage of apoptotic cells was found to increase. Meanwhile, in both cell lines, secreted protein acidic and rich in cysteine (SPARC) levels were down-regulated together with inhibition of its upstream signaling molecule, NF-κB. Thus, the current results suggested that down-regulated expression of ET3 attenuates the malignant behaviors of human melanoma cells partially by decreasing the expression of SPARC and NF-κB.
    Journal of Huazhong University of Science and Technology 08/2013; 33(4):581-6. · 0.58 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Icotinib is a potent and specific epidermal growth factor receptor tyrosine kinase inhibitor. In this study, we reported that icotinib had the antitumor activity on human squamous cell carcinoma cell line A431 in vitro. Meanwhile, adhesion to fibronectin and expression of integrin α3 and β1 were significantly reduced in a dose-dependent manner after the treatment of icotinib. Moreover, icotinib induced cell cycle arrested and affected expression of various cell cycle related proteins in squamous cancer cell line A431, whereas it did not cause apoptosis. Furthermore, icotinib remarkably down-regulated phosphorylation of protein kinase B (AKT) though blocking the interaction between 3-phosphoinositide-dependent protein kinase-1 (PDK1) and AKT in A431 cells. Taken together, it is shown that the small molecular compound, icotinib, has an anti-squamous cell carcinoma activity in vitro and its antitumor mechanism is associated with the blockage of the interaction between PDK1 and AKT. These results provide a novel strategy for anti-squamous cell carcinoma therapy.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 04/2013; · 2.24 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The cross talk between the stroma and cancer cells plays a major role in phenotypic modulation. During peritoneal carcinomatosis ovarian cancer cells interact with mesenchymal stem cells (MSC) resulting in increased metastatic ability. Understanding the transcriptomic changes underlying the phenotypic modulation will allow identification of key genes to target. However in the context of personalized medicine we must consider inter and intra tumoral heterogeneity. In this study we used a pathway-based approach to illustrate the role of cell line background in transcriptomic modification during a cross talk with MSC. We used two ovarian cancer cell lines as a surrogate for different ovarian cancer subtypes: OVCAR3 for an epithelial and SKOV3 for a mesenchymal subtype. We co-cultured them with MSCs. Genome wide gene expression was determined after cell sorting. Ingenuity pathway analysis was used to decipher the cell specific transcriptomic changes related to different pro-metastatic traits (Adherence, migration, invasion, proliferation and chemoresistance). We demonstrate that co-culture of ovarian cancer cells in direct cellular contact with MSCs induces broad transcriptomic changes related to enhance metastatic ability. Genes related to cellular adhesion, invasion, migration, proliferation and chemoresistance were enriched under these experimental conditions. Network analysis of differentially expressed genes clearly shows a cell type specific pattern. The contact with the mesenchymal niche increase metastatic initiation and expansion through cancer cells' transcriptome modification dependent of the cellular subtype. Personalized medicine strategy might benefit from network analysis revealing the subtype specific nodes to target to disrupt acquired pro-metastatic profile.
    Journal of Translational Medicine 03/2014; 12(1):59. · 3.46 Impact Factor


Available from