Stathmin 1, a marker of PI3K pathway activation and regulator of microtubule dynamics, is expressed in early pelvic serous carcinomas

Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
Gynecologic Oncology (Impact Factor: 3.69). 06/2011; 123(1):5-12. DOI: 10.1016/j.ygyno.2011.05.021
Source: PubMed

ABSTRACT Most high-grade pelvic serous carcinomas (HGPSCs) arise from fallopian tube epithelium (FTE). To date, few markers have been shown to characterize FTE transformation. Stathmin 1 (STMN1) is a candidate oncogene whose activity is influenced by p53, p27Kip1 (p27), and PI3K/Akt pathway activation. As a microtubule destabilizing protein, STMN1 regulates cytoskeletal dynamics, cell cycle progression, mitosis, and cell migration. This study examines the expression of STMN1 and its negative regulator p27 along the morphologic continuum from normal FTE to invasive carcinoma.
STMN1 and p27 expression were examined by immunohistochemistry (IHC) in benign (n=12) and malignant (n=13) fallopian tubes containing normal epithelium, morphologically benign putative precursor lesions ("p53 signatures"), potential transitional precursor lesions ("proliferative p53 signatures"), tubal intraepithelial carcinoma (TIC), and/or invasive serous carcinoma. STMN1 expression was further assessed in 131 late-stage HGPSCs diagnosed as primary ovarian and in 6 ovarian cancer cell lines by IHC and Western blot, respectively.
STMN1 expression was absent in benign FTE and infrequently detected in p53 signatures. However, it was weakly expressed in proliferative p53 signatures and robustly induced upon progression to TIC and invasive carcinoma, typically accompanied by decreased p27 levels. STMN1 was expressed in >80% of high-grade serous ovarian carcinomas and cell lines.
STMN1 is a novel marker of early serous carcinoma that may play a role in FTE tumor initiation. Our data are consistent with a model by which STMN1 overexpression, resulting from loss of p27-mediated regulation, may potentiate aberrant cell proliferation, migration, and/or loss of polarity during early tumorigenesis.

  • [Show abstract] [Hide abstract]
    ABSTRACT: STMN1 is a cytosolic phosphoprotein that not only participates in cell division, but also plays an important role in other microtubule-dependent processes, such as cell motility. Furthermore, STMN1 acts as a "relay protein" in several intracellular signaling pathways that influence cell growth and differentiation. Thus, STMN1 is likely to support cellular processes essential for tumor progression: survival and migration. Indeed, elevated STMN1 expression has been reported in various types of human malignancies and is correlated with poor prognosis in these human malignancies. However, the clinical and prognostic significance of STMN1 in pancreatic ductal adenocarcinoma (PDAC) remains unknown. Thus, we assessed STMN1 in PDAC in this retrospective study. We first examined STMN1 expression in PDAC tissues from 27 cases and matched adjacent non-cancerous tissues by quantitative polymerase chain reaction (PCR) and western blot analyses. Next, immunohistochemistry was used to evaluate STMN1 expression in 87 archived paraffin-embedded PDAC specimens. STMN1 mRNA and protein expression levels were to a large extent up-regulated in PDAC tissue compared with their adjacent non-cancerous tissues. Moreover, STMN1 expression was closely correlated with histological differentiation, lymphatic metastasis, and TNM stage (P = 0.023, 0.047, and 0.014, respectively). In addition, PDAC patients with higher STMN1 expression died sooner than those with lower STMN1 expression (P < 0.01). Multivariate analysis demonstrated that STMN1 expression was an independent prognostic factor for PDAC patients (P < 0.01). Herein, we provide the first evidence that up-regulated STMN1 may contribute to tumor progression and poor prognosis in PDAC patients and may serve as a novel prognostic marker.
    Pathology & Oncology Research 03/2015; DOI:10.1007/s12253-015-9930-y · 1.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Women who have an inherited mutation in the BRCA1 or BRCA2 genes have a substantial increased lifetime risk of developing epithelial ovarian cancer (EOC), and epidemiological factors related to parity, ovulation, and hormone regulation have a dramatic effect on the risk in both BRCA mutation carriers and non-carriers. The most common and most aggressive histotype of EOC, high-grade serous carcinoma (HGSC), is also the histotype associated with germline BRCA mutations. In recent years, evidence has emerged indicating that the likely tissue of origin of HGSC is the fallopian tube. We have reviewed, what is known about the fallopian tube in BRCA mutation carriers at both the transcriptional and translational aspect of their biology. We propose that changes of the transcriptome in BRCA heterozygotes reflect an altered response to the ovulatory stresses from the microenvironment, which may include the post-ovulation inflammatory response and altered reproductive hormone physiology.
    Frontiers in Oncology 01/2014; 4:5. DOI:10.3389/fonc.2014.00005
  • [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the molecular mechanisms behind formation of melanoma, the deadliest form of skin cancer, is crucial for improved diagnosis and treatment. One key is to better understand the cross-talk between epidermal keratinocytes and pigment-producing melanocytes. Here, using a bigenic mouse model system combining mutant oncogenic NRASQ61K (constitutively active RAS) or mutant activated CDK4R24C/R24C (prevents binding of CDK4 by kinase inhibitor p16INK4A) with an epidermis-specific knockout of the nuclear retinoid X receptor (RXRalphaep-/-) results in increased melanoma formation after chronic ultraviolet-B (UVB) irradiation compared to control mice with functional RXRalpha. Melanomas from both groups of bigenic RXRalphaep-/- mice are larger in size with higher proliferative capacity, and exhibit enhanced angiogenic properties and increased expression of malignant melanoma markers. Analysis of tumor adjacent normal skin from these mice revealed altered expression of several biomarkers indicative of enhanced melanoma susceptibility, including reduced expression of tumor suppressor p53 and loss of PTEN, with concomitant increase in activated AKT. Loss of epidermal RXRalpha in combination with UVB significantly enhances invasion of melanocytic cells to draining lymph nodes in bigenic mice expressing oncogenic NRASQ61K compared to controls with functional RXRalpha. These results suggest a crucial role of keratinocytic RXRalpha to suppress formation of UVB-induced melanomas and their progression to malignant cancers in the context of driver mutations such as activated CDK4R24C/R24C or oncogenic NRASQ61K. Implications: These findings suggest that RXRalpha may serve as a clinical diagnostic marker and therapeutic target in melanoma progression and metastasis.
    Molecular Cancer Research 09/2014; 13(1). DOI:10.1158/1541-7786.MCR-14-0164 · 4.50 Impact Factor